

Solar power generation calculations for the European Domain

Climate Change

Yves-Marie Saint-Drenan, Mines ParisTech

20 November 2017

- Objective of the work and addressed issues
- Approach to the calculation of the regional PV power generation
- Validation of the proposed approach

- Objective of the work and addressed issues
- Approach to the calculation of the regional PV power generation
- Validation of the proposed approach

OBJECTIVE and ISSUES ADDRESSED

OBJECTIVE and ISSUES ADDRESSED

Goal: Calculation of the PV power generation from climate data (re-analysis and projection) for any location in Europe.

Problem: How to take the characteristics of the PV plants into consideration ?

- Objective of the work and addressed issues
- Approach to the calculation of the regional PV power generation \bullet
- Validation of the proposed approach

Climate Change

Parameters

Approach - motivation

A Probabilistic Approach to the Estimation of Regional Photovoltaic Power Generation using Meteorological Data, Application of the Approach to the German Case, PhD Thesis, Yves-Marie Saint-Drenan, Kassel, August 2015

Europear

Approach - model selection (1/2)

All parameters set to reference values except the module orientation angles.

$P_{pv,i}=f_{pv}(\alpha_{pv,i}, \gamma_{pv,i}, SSRD, T2M)$

Approach-model selection (2/2)

Climate Change

> $P_{pv} = \frac{1}{\sum_{i} C_{i}} \sum_{i} C_{i} P_{pv,i}$ C_i peak capacity of the ith plant with specific power of the ith plant $P_{pv,i}$ $P_{pv,i}=f_{pv}(\alpha_i,\gamma_i,SSRD,T2M)$ $P_{pv} = \sum_{i,j} \rho(\alpha_i, \gamma_j) f_{pv}(\alpha_i, \gamma_j, SSRD, T2M)$ $\rho(\alpha_i, \gamma_j)$ share in capacity of plants with with an orientation (α_i, γ_j)

Approach - model parameter estimation

Estimation of the distribution function $\rho(\alpha, \gamma)$

Change

Approach - model parameter estimation

Choice of the optimal tilt angle dataset

50

> The optimal slope dataset prepared by **PV-GIS has been** chosen.

Orographic effects on optimal slope have been removed.

The dataset has been projected on the raster used for the energy variable calculations.

- Objective of the work and addressed issues
- Approach to the calculation of the regional PV power generation
- Validation of the proposed approach

Climate

Country	France	Germany
Time period	01/01/2014 - 31/12/2014	01/01/2014 – 31/12/2014
Installed capacity	6.2 GW _p	36.9 GW _p
Input meteorological data	3-hourly ERA-interim data (SSRD, T2M)	3-hourly ERA-interim data (SSRD, T2M)
Reference PV power data	30-min estimates from RTE aggregated in a 3-hourly country- wide capacity factor (W/W _p)	15-min estimates from four TSOs aggregated in a 3-hourly country- wide capacity factor (W/W _p)

Validation: Comparison of the time series

Variuation. Scatter prois and error

Climate Change

France (Year 2014)	Germany (Year 2014)
1831	1814
-2.4 %	0.1 %
3.0 %	2.4 %
4.2 %	3.8 %
0.99	0.97
	France (Year 2014) 1831 -2.4 % 3.0 % 4.2 % 0.99

Conclusion

- We proposed an approach for calculating the PV capacity factor in Europe.
- Apart from the optimal slope, no PV plant parameter is needed to implement the proposed model. Existing databases such as PV GIS can be used for determining the optimal slope.
- A first validation with TSO data shows that the model yields satisfactory results for **Germany and France.**
- The proposed approach has been implemented for 33 EU countries and 99 regions with the ERA-interim data (1979-2016) and 12 CORDEX members (1979-2050)
- A free access to the resulting capacity factors is available on the ECEM demonstrator:

http://ecem.climate.copernicus.eu/demo

Climate Change

Thank You

