

A case study approach to understanding variability and risk in the energy sector: Winter 2010

Emma Suckling
University of Reading

e.suckling@reading.ac.uk

MOTIVATION

- Using a case study approach to:
 - Demonstrate the value of climate information for understanding variability and informing risk

Understanding Variability

Return times of particular classes of events and their impacts

Pattern based analysis of large-scale drivers using historical reanalysis

Seasonal Forecasting

How can seasonal forecasts be used for the energy sector?

Future Change

Changes in return times of events under future climate

Identifying vulnerabilities under future power systems

MOTIVATION

- Using a case study approach to:
 - Get the best out of the ECEM demonstrator tool and datasets
 - How might demonstrator tool be used to understand risks of particular events?

ECEM CASE STUDIES

A series of case study documents available from the ECEM

demonstrator

- Use ECEM demonstrator and data to boost decision-making
 - Unusually cold winter of 2009/2010 can be seen in the ECEM data
 - Impact of a winter like 2009/2010 would have bigger impact on energy sector today
- The ECEM datasets:
 - Bring together credible climate and energy data
 - Processed in a consistent way over Europe
 - Covering a range of time scales and resolutions
- Reanalysis, seasonal forecasts and climate projection data can:
 - Reveal dependencies and risks across Europe
 - Put an event into context of recent history
 - Ask 'what if' questions
 - Help to anticipate future risks

Record power demand in 2010

- Linking temperature and demand
 - Temperature and modelled electricity demand over UK

What if winter 2009/2010 happened today?

ECEM Timeseries

→ UK WIN CFR PhM01 DJF

Change

CASE STUDIES - WINTER 2009/2010

- Can we anticipate cold spells and their impacts?
 - Climate projections useful to anticipate changes in risk
 - Fewer cold winters likely in future

ECEM Timeseries: Air Temperature (TA) Anomaly - DJF only

Produced by the ECEM Demonstrator (demos.the-iea.org/ecem)

- Can we anticipate cold spells and their impacts?
 - Seasonal forecasting shows some skill
- Words of caution!
 - Seasonal forecasts not skillful everywhere
 - Some variables from reanalysis still have some weaknesses
- The demonstrator does provide valuable insight for a wide range of energy-relevant applications/ questions

CASE STUDIES — SEASONAL FORECASTS

- Highlight current state of seasonal forecasting
 - Skill in some variables, seasons and models (e.g. Balkans in JJA SAT)
 - Skill in seasonal forecasts of winter North Atlantic Oscillation
 - How could NAO forecast be used for energy applications?

CASE STUDIES — UNDERSTANDING VARIABILITY

- Use 30yr reanalysis based on current power system to study:
 - Co-variability between climate and energy indicators
 - Dependencies between European countries

Figure 4. Left: scatter plot of daily temperature (°C) and GB electricity demand (GWh) between January 1975 and March 2013, during week days and non-holidays, coloured by season. The Pearson correlation coefficient (r) is given for the annual relationship, with linear fits for each season and annually. Right: as left but detrended GB electricity demand and detrended CET.

e.g. H. Thornton, B. Hoskins and A. Scaife, ERL, 11 (2016)

Change

CASE STUDIES — UNDERSTANDING VARIABILITY

- Use 30yr reanalysis based on current power system to study:
 - Large-scale modes of variability e.g. North-South dipole, NAO
 - Pattern-based (EOF) analysis
 - Impacts of large-scale modes

C. Ely et al., (2013)

Sandra Hansen, David Brayshaw and John Methven

CASE STUDIES - SUMMARY

Current cases:

- Winter 2010
- Seasonal Forecasting (focus on the Balkans region)
- Climate projections
- Technical report on historical variability

Other cases:

– This is open for suggestion!

CASE STUDIES — SUMMARY

- Use ECEM demonstrator and data to boost decision-making
 - Unusually cold winter of 2009/2010 can be seen in the ECEM data
 - Impact of a winter like 2009/2010 would have bigger impact on energy sector today
- The ECEM datasets:
 - Bring together credible climate and energy data
 - Processed in a consistent way over Europe
 - Covering a range of time scales and resolutions
- Reanalysis, seasonal forecasts and climate projection data can:
 - Reveal dependencies and risks across Europe
 - Put an event into context of recent history
 - Ask 'what if' questions
 - Help to anticipate future risks

