Il valore delle osservazioni e delle previsioni meteorologiche per le energie rinnovabili

> Alberto Troccoli World Energy & Meteorology Council (UK) University of East Anglia (UK)

Rovereto (Italia), 11-12 Nov 2016

Energia e meteorologia vanno a braccetto

Ma cosa significa la parola Meteorologia?

Il termine deriva dal greco μετεωρολογία, *meteōrología*, da μετέωρος *metéōros*, "elevato" e λέγω *légō*, "parlo", quindi "discorso razionale intorno agli oggetti alti". La parola μετέωρος ha un'etimologia incerta, forse da μετά *metá* "con, dopo" e αἴρω *áirō* "alzo"

The word "<u>meteorology</u>" is from Greek μετέωρος *metéōros* "lofty; high (in the sky)" (from μετα- <u>meta-</u> "above" and ἀείρω *aeiro* "I lift up") and -λογία <u>-logia</u> "<u>-(o)logy</u>",

i.e. "the study of things in the air".

Global Final Energy Consumption

REN21 Renewables 2016 Global Status Report

RE Share of Global Electricity Production

Based on renewable generating capacity at year-end 2015. Percentages do not add up internally due to rounding.

REN21 Renewables 2016 Global Status Report

Strong growth in renewables

WEMC World Energy & Meteorology Council

IRENA (2016)

Non solo aumento delle rinnovabili ...

Efficienza energetica

Impatti su strutture energetiche

Solar Power Potential

Significant science & technical challenges

PV Installations in Australia by postcode

Solar radiation – can be very highly variable

Important to measure PV panel temperature

PV panel temperature: $T_{PV} \approx \alpha GI + T_{air}$ with GI: Global Irradiance on PV plane, and α an empirical coefficient

Meteorology Council

PV production is highly dependent on the temperature of PV panels, which in turn depends on air temperature. As a rule of thumb, an increase of 20C in PV panel temperature leads to a decrease in PV production of 10%

Australian National Energy Market

- Run by Australian Energy Market Operator (AEMO)
 - ~50GW installed capacity
 - Market coupled to physical operation at 5 min intervals
- Wind & Solar (now & 2030)
 - Wind ~4GW \rightarrow 10GW
 - − Solar PV ~5GW \rightarrow 13 GW
- Wind forecasting since 2009 (AWEFS)
- Solar forecasting since 2014 (ASEFS)

Regulation Services Demand

- With large quantities of intermittent generation this demand can exceed spinning reserve
- Normally supplied by conventional generators

Why Forecast Variable Renewable Power?

- From seconds to minutes
 - System control
 - Electricity system stability
- From minutes to hours
 - Alternative Generation scheduling
 - Storage system scheduling, peak shaving
- From hours to days

Meteorology Council

- Alternative Generation scheduling, load shifting
- Power system adequacy assessment
- From days to months to years
 - Power system adequacy assessment
 - Resource assessment

Observations – Ground

Observations – Space

Observations – Space (NASA & ESA)

Observations – You can set up your own!

Physical/Mathematical Models

Physical/Mathematical Models

Meteorological Variables for Energy

Energy and Meteorological 'pairings'

Demand Air temperature Cloud cover Water vapour Albedo Nighttime lights Hydro Soil moisture Precipitation Snow cover Elevation River/lake par Gravimetry

Solar Solar irradiance Cloud cover Water vapour Aerosols Albedo Air Temperature Land cover Elevation

Biomass Solar irradiance Air Temperature Precipitation Soil moisture Land cover Cloud cover Albedo Elevation

Wind

Elevation Offshore winds Wave/currents Ocean altimetry

Marine

Offshore winds Wave/currents Ocean altimetry

Thermal

Air Temperature River/lake par Oil & Gas Offshore winds Wave/currents Ocean altimetry

Meteorology Council

Historical Observations – Solar Radiation for NH

Monthly data, 1 year and 5 year running means

Historical Reanalysis – Solar Radiation (1981-2010)

CMIP3 sresb1 (13) [2050-2079] - CMIP3 (14) [1970-1999]

Solar Radiation Components

Gloi WENC World Energy & Meteorology Council

Global radiation = Direct Beam + (Refl. d. + Backsc. d. + Trans. d.) = Direct Beam + Diffuse radiation

Pros & Cons of Solar Radiation Data Sources

Ground stations

Satellite

Atmospheric model

oloav Council

- P: Measure exactly the radiation received by the ground
- **P:** High frequency (energy) data (1-sec)
- C: Limited coverage
- C: Maintenance costs, particularly at remote locations
- P: Wide and frequent coverage (e.g. 5 km, 30 min)
- P: Algorithms specific for solar radiation
- C: Instantaneous (power) measure; DNI derived from GHI
- C: Technical limitations such as parallax, air composition
- **P:** Wide and frequent coverage (e.g. 5 km, 30 min)
- P: Flexible in choice of periods and domains
- C: Radiation schemes computationally expensive
- C: Models not tuned to produce best radiation

Blending of data sources

Blending of solar radiation data sources

• Fit generalised additive model (GAM) to hourly ground station data:

 $k_m \sim f(k_s, k_c, \cos(\theta_z))$

k_m: measurements clear sky index

k_s: satellite clear sky index (nearest grid point)

- k_c: weather model clear sky index (nearest grid point)
- θ_z : solar zenith angle

Meteorology Council

Cross validate at each ground station by reserving half the data Baseline model: satellite GAM $k_m \sim f(k_s, \cos(\theta_z))$

Davy et al. (2015)

Need to use

RMSE improvement for GHI by including CCAM

Wagga Wagga GHI – SD changes relative to satellite

Davy et al. (2015)

World Energy & Meteorology Council

Meteorological products

Building on Wind Forecasting at AEMO

AWEFS - ANEMOS Wind forecasting system

- Compulsory centralised forecasting
- 10 sec SCADA feed required
- Up to 200 wind farms
- Operational since 2008

AWEFS Performance

AWEFS NMAE forecast performance

Solar forecasting techniques for different timescales

Assessment – Solar Radiation Stations

Canberra Reference Site: 'Solar Lab'

Canberra Solar radiation and power network

- Radford College (Fed 2010)
- Namadgi School (Nov 2011)
- Wombat Hill (Nov 2011)
- CSIRO Black Mountain (Mar 2012)
- WERU's Solar Lab
 - Tracking solar/PV
 - Ceilometer
 - Spectro-radiometer
 - Sky camera
- Weetangera School (Jun 2013)

The Australian Solar Energy Forecasting System

Modelled Wind Speed @location...

Wind farm standing data

standing data eg. power curve Modelled Solar Radiation input components (direct, diffuse) @location, physical distribution, time, date, other dependent data (panel temp)

Solar farm standing data eg. power curve + any fuel conversion, storage

ASEFS test results

World Energy & Meteorology Council

Alcuni risultati da studi di ricerca

Effect of aerosols (smoke) on PV

Canberra, 4th March 2014

Perry & Troccoli (2015)

Effect of aerosols on PV

Amorphous silicon (a.Si)

0.9043

World Energy & Perry & Troccoli (2015)

Cloud Motion Vectors

WEMC

World Energy & Meteorology Council

CMVs produced at Mildura site on 16/03/2014 at 0030, 0040, 0050 UTC

Derived CMVs compared to MISR instrument on TERRA satellite

Courtesy UNSW

Daily Variability Index (DVI) Prediction

$$DVI = \frac{\sum_{k=2}^{n} |GHI_{k} - GHI_{k-1}|}{\sum_{k=2}^{n} |CSI_{k} - CSI_{k-1}|}$$

DVI: daily variability index GHI: global horizontal irradiance CSI: clear sky irradiance 2006-01-01 DVI = 26.9

Huang et al. (2014)

Daily Variability Index (DVI) Prediction

- The results at the nearest grid point are used
 CCAM
 - outperforms GFS in forecasting of both GHI and DVI
- Important predictors include cloud and wind velocities

Wagga Wagga – Inland temperate

Huang et al. (2014)

Solar NWP- pushing it to 5 days ahead

Monthly means for the three solar components

Bias based on clear sky index and zenith angle

Bias correction reduces error

Adelaide airport

Troccoli and Morcrette (2014)

Solar NWP-pushing it to 5 days ahead

Meteorology Council

Non-corrected model (**black**), bias corrected over 2006 (**green**), bias corrected second half 2006 (**red**), persistence forecast (**cyan**)

Troccoli and Morcrette (2014)

Approcci di ricerca emergenti

Videocamere per la previsione di energia solare

- 1. Classificare Nuvole
- 2. Caratterizzare la distorsione della lente
- 3. Estrarre vettori di movimento delle nuvole
- 4. Estrapolare i vettori tenendo conto della distorsione della lente
- 5. Valutare tempo di copertura nuvole

High-resolution 180 degree panorama cameras (Mobotix Q24M)

Courtesy CSIRO

VIDEOCAMERA MOVIE

Courtesy CSIRO/ARENA

Sky camera network

- 10km radius: cover whole city with handful of cameras
- 15 sites around Canberra & Newcastle for ramp and irradiance forecasting
- Canberra sites co-located with: Pyranometer, PV arrays & weather stations

Canberra

Newcastle

Il problema dell'immagazzinamento di energia

Custom Built Pumped Hydro – Missouri - 450MW

Compressed Air Storage

Huntdorf, Germany (290 MW) & McIntosh, Alabama. (110 MW)

Sodium Solphur (NaS) and Lithium-Ion Batteries

Vanadium Redox Flow Battery – King Island Tasmania

VRB Power Systems 200kW/ 800 kWhr (4 hrs storage)

Flywheel - Regulation Services

Beacon Power 20MW / 5MWhr (15 min storage)

Summary of storage response times

Pumped Water – O(min)

Electrical – O(sec)

Capacitors – O(msec)

Flywheel – O(msec)

Response Time

Tests su cicli ricarica batterie

Il valore delle previsioni per energia eolica e solare

- NCAR wind power system for Xcel energy
 - Cost a few million USD, yielded an improvement of around 40% in forecast accuracy, which led to a cost saving of USD 49 million/yr
- NCAR solar power system for Xcel energy
 - A forecast improvement of ca 50% → cost saving of USD 820k/year
 - Projected to be USD 10-21 million/yr

Haupt et al. (2016)

Summary

- A huge amount of weather/climate observations and model output – though not so many for solar irradiance and wind speed above 10 m
- Accuracy of weather/climate products generally very good but need to understand limitations and their variability
- Wind and solar power forecasting proven to work in operational context for grid integration

The Energy & Meteorology Conference Series

Get involved!

4th INTERNATIONAL CONFERENCE ENERGY & METEOROLOGY

Challenges in Weather and Climate Services for Energy SAVE THE DATE 27-29 June Apulia Region, Italy

http://www.wemcouncil.org/

Get in touch!

info@wemcouncil.org

www.wemcouncil.org

School of Environmental Sciences University of East Anglia Norwich NR4 7TJ, UK

