

The climate debate: basic science and possible actions

Alberto Troccoli

Weather & Energy Research Unit, CSIRO Weetangera Primary, Canberra, November 2011

Outline

1. Earth System 2. Weather Observations 3. Models of the climate **4. Weather vs Climate** 5. Climate forcings 6. Climate response 7. Possible actions

Sunlight passes through the atmosphere and warms the Earth's surface. This heat is radiated back toward space.

> Most of the outgoing heat is absorbed by greenhouse gas molecules and re-emitted in all directions, warming the surface of the Earth and the lower atmosphere.

Mars Thin atmosphere (Almost all CO₂ in ground) Average temperature : - 50°C

Venus Thick atmosphere containing 96% of CO₂ Average temperature : + 420°C

Sources: Calvin J. Hamilton, Views of the solar system, www.planetscapes.com; Bill Arnett , The nine planets, a multimedia tour of the solar system, www.seds.org/billa/tnp/hineplanets.html

Planets and atmospheres

Venus

Earth

Mars

NASA

	- + + +		+-+
Surface pressure relative to Earth (bars)	90	1	0.007
Major greenhouse gases (GHG)	CO2	H ₂ O, CO ₂	CO2
Temperature if no GHG (°C)	-46	-18	-57
Actual temperature (°C)	477	15	-47
Temperature change due to GHG	+523	+33	+10

Energy Budget

Physics becomes very complex pretty soon

Atmosphere

Anthropo - sphere

The second

Hydrosphere

Lithosphere and Pedosphere

Biosphere

Human Activity & interaction with Climate

Monitoring the weather from space

Monitoring the weather from the ground

Monitoring the oceans

CSIRO

Computer Models to Simulate Climate

Research Aeteorology

Weather what is happening outside right now

Climate vs Weather

Climate is the **average** of local weather conditions over a period long enough (>30 years) to provide a reliable average that includes the inevitable peaks and troughs of natural variability.

So climate integrates all weather and its variability

Temperature change

Temperature and CO₂ concentration in the atmosphere over the past 400 000 years (from the Vostok ice core)

50 years of CO2 observations show an increase of 2.2 parts per million per year This rate of increase is extremely fast geologically

CO₂ evolution

Projected surface temperature changes

Geographical pattern of surface warming

A partnership between CSIRO and the Bureau of Meteorology

Sea level changes

Sea level changes

Sea level changes

Carbon Penalty

Carbon Penalty

Possible Actions

ANYTHING WE DO REQUIRES ENERGY

AGV Automotrice Grande Vitesse

A Deserver

Annual greenhouse gas emissions from 'standby' power

CSIRO

ather and Climate Research and the Bureau of Meteorology

Hydro Power

Wind Power

Solar thermal (Hot Water)

Solar hot water evacuated tube collector.

Solar hot water panel with roof-top tank.

Solar Power (photovoltaic)

Geothermal Power

Power extracted from heat stored in the earth

Surface plant

Cold water (25°C) circulated down to hot rock resevoir

> Directionally drilled wells to intercept fracture zone

Hydraulic fracture zone (10,000 square feet)

Hot water (200°C) produced from second well

10,000 feet

Reservoir, 225 to 300°C (depends on depth and location)

How the Proposed Renewable Energy Network Might Look

С

Wind

Hydro

 \bigcirc

Solar PV

Biomass

Geothermal

Final thought

Even if your action won't make a huge difference think of what happened if 7 billion people did the same thing. **So, why not start making**

Doesn't it make you feel insignificant?

Weather & Energy Research Unit (WERU)

Dr Alberto Troccoli Phone: 02 6246 5759 Email: alberto.troccoli@csiro.au

Thank you

Monitoring the weather from the ground

