WP3: From Climate to Energy

Laurent Dubus & Sandra Claudel, EDF Matteo de Felice, ENEA Thierry Ranchin, ARMINES David Brayshaw, Univ. Reading Hazel Thornton, Met Office

London, June 28 2016

WP3 - From Climate to Energy: Databases & Transfer Functions

YOUR ATTENTION PLEASE

From Climate to Energy: Databases & Transfer Functions

European Commission

Some literature review & thinking has been necessary !

European

Commission

FIRST RESULTS: ANALYSIS OF 6 HOURLY DEMAND FRANCE / GENERALIZED ADDITIVE MODELS (GAM)

Calibration 01/01/2006 to 31/12/12

Validation 01/01/13 to 31/12/14

Load \sim s(Temperature)

- + s(Nebu)
- + s(toh)

+ s(Posan, bs = 'cc', k = 40, by = as.factor(TypeJour7))

+ as.factor(JourSemaine):as.factor(JourFerie)")

Temperature / Spline Cloud Cover / Spline Demand trend / Spline Seasonality week days / feries

6

Calibration period

	0h	6h	12h	18h	Global
RMSE	1729	1788	1716	1652	1722
MAPE	2.3%	2.7%	2%	2.1%	2.3%

Validation period

	0h	6h	12h	18h	Global
RMSE	2133	2202	2556	1979	2218
MAPE	2.6%	3.1%	3.7%	2.5%	3%

Dernicus

European

Commission

FIRST RESULTS: ANALYSIS OF MONTHLY & DAILY DEMAND

★ Simple models can perfom well, but we need input DATA:

★ Demand data (at least daily resolution) – sub-country level ?

European

Commission

opernicus

7

- ★ Economic data
- ★ Working days / bank holidays...

POWER SUPPLY: WIND & SOLAR GENERATION

Use generic TFs

Implemented so that they can be changed easily

Do you have preferred one(s)

- Determine grid point (50x50 km²) installed capacity for WIND & SOLAR
- Compute WIND/SOLAR power output for each grid point
- Average at CLUSTER and COUNTRY scale

Databases: WIND: <u>www.thewindpower.net</u>

(a) $\Delta t = 3 \text{ hr}$

20

r = 0.77

log₁₀(Occurrences)

European Commission

POWER SUPPLY: WIND & SOLAR GENERATION

Generic Transfer Functions (TF_W & TF_S) available from the literature

$$W_{pot} = \begin{cases} 0 & \text{if } V < V_{I} \\ \frac{V^{3} - V_{I}^{3}}{V_{R}^{3} - V_{I}^{3}} & \text{if } V_{I} \le V < V_{R} \\ 1 & \text{if } V_{R} \le V < V_{O} \\ 0 & \text{if } V \ge V_{O} \end{cases}$$

$$V_{I} = 3.5 \text{ m/s}$$

 $V_{R}=13 \text{ m/s}$
 $V_{0}=25 \text{ m/s}$

$$V(h) = V(h_0) \left(\frac{h}{h_0}\right)^{1/7}$$

Jerez et al., 2015

Figure from Bett & Thornton, 2016

POWER SUPPLY: HYDROPOWER GENERATION

POWER SUPPLY: THERMAL & NUCLEAR GENERATION

- Installed capacity: any public database available welcome
- Required information:
 - Location (lat/lon/alt)
 - Cooling system: Air, Seawater or River (+River Name)
- Need River flow (from SMHI & SWICCA) & water temperature:
 observations welcome
- → Determine availability of plant depending on cooling system (0/1 parameter) with simple thresholds

relevant thresholds ?

Any other suggestion ?

Europear

Commission

?

ENERGY VARIABLES - KEY QUESTIONS

- Do you have any preference for specific transfer functions / models ? Experience to share ?
- Do you have any database that you can share with us ? Especially installed capacity
- ★ Do you think the proposed approaches will provide you useful information ?...
- * ...at an appropriate level of quality and authority, including uncertainty?

edf

Workshop, London, UK

