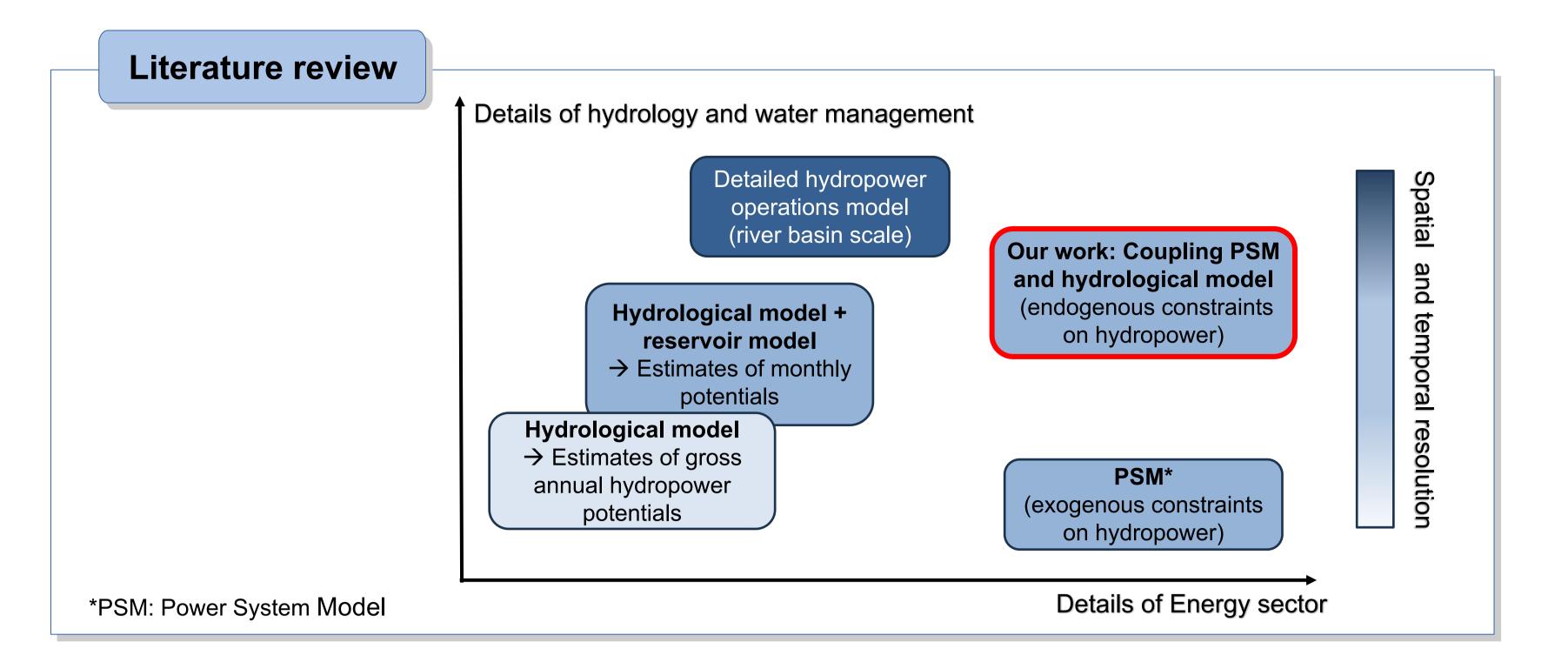
Improving hydropower constraints modeling for a national power grid

Laure Baratgin^{1,2}, Philippe Quirion², Jan Polcher¹, Patrice Dumas²,

¹LMD/IPSL, CNRS, France.


²CIRED, CNRS, Ponts ParisTech, CIRAD, France

Introduction

As climate policies encourage the integration of variable renewable energy into the grid, hydropower can be an important asset for enhancing grid flexibility. However, it will be subject to evolving constraints related to water resources and the operation of muti-purpose reservoirs.

How to account for these constraints in power system modeling?

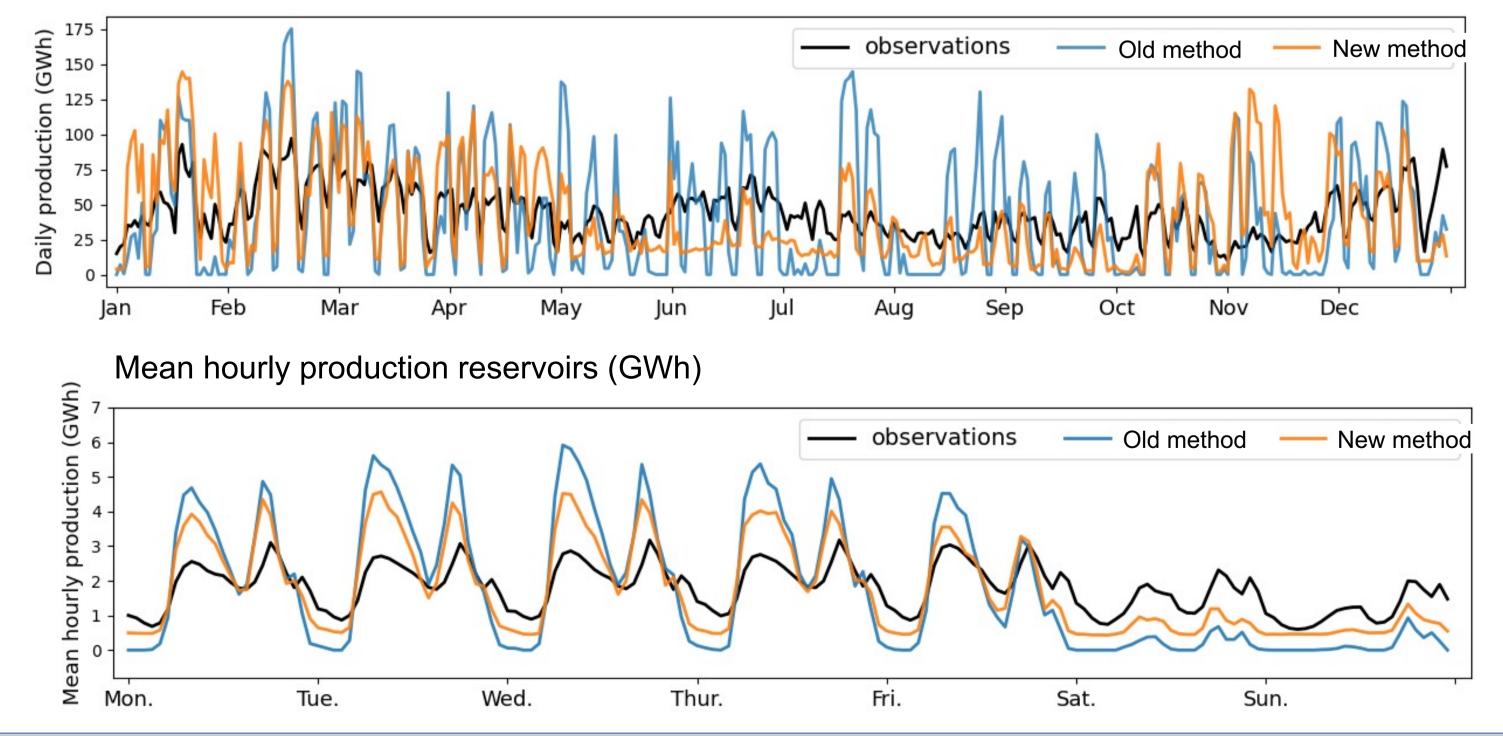
We explore the value of coupling a power system model with a hydrological model that represents the operation of hydroelectric dams.

ICEM, 2023

Methods

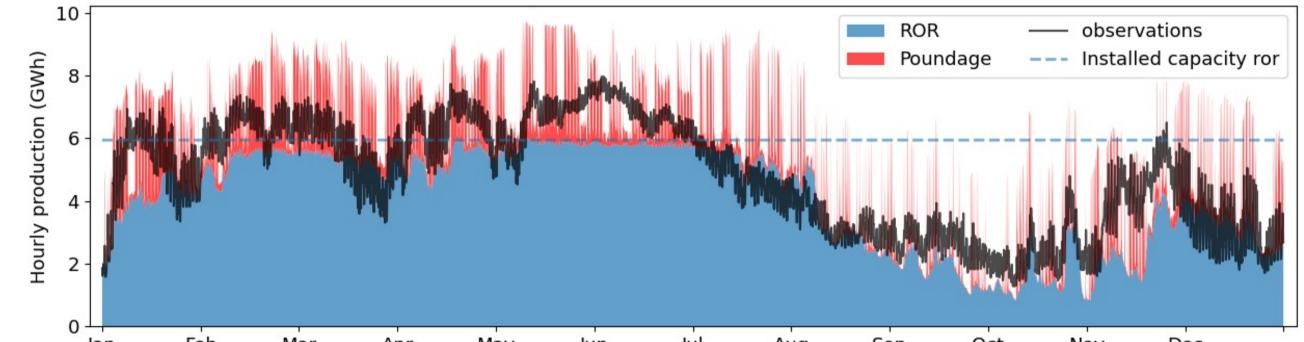
Iterative simulations of ORCHIDEE and EOLES

	 ORCHIDEE (Hydrological Model) Integrates location of hydropower plants and reservoirs Demand-based simulation of hydropower operations Reservoir operations account for other uses (tourism, irrigation) 	National hydropower production timeseries Timeseries to constrain hydropower generation Hydropower constraints in EOLES	EOLES (PSM) Optimizes the dispatch of an installed fleet under hourly constrains, exogenous power demand 7 countries (1 node per country) – 10 technologies
Run-of-river	Old method Capacity factor from observations	New method: (Capacity factor based on ORCHIDEE's simulat	Coupling with hydrological model
Reservoir	Monthly production from observations, free optimization inside a month $\sum_{h \in month} G_h = Prod_{month}$	New constraints based on ORCHIDEE's simulation $ \begin{cases} - Inflows_h = Water entering the reservoir \\ - Spill_pot_h = Energy potential of the spillage \\ - Rmin_h = Constrained releases from the reserve ecological spill) \\ - Rmin_pot_h = Energy potential of constrained \\ - Pmax_h = Maximal available capacity (tourised) $ $ \Rightarrow a new model variable in EOLES: Relec_h = Reserve and the res$	ervoir (irrigation, ed releases m) $S_{h+1} = S_h + Inflows_h - Rmin_h - Relec_h$ $G_h \leq Spill_pot_h + Rmin_pot_h + Relec_h$ $G_h \leq Pmax_h$


Poundage	Included in run-of-river capacity factor	Modeled as reservoir plants			
PHS*	Modeled as a battery $S_{h+1} = S_h + \eta_{phs} * \overline{G}_h - G_h$	Constraints on upstream and downstream reservoirs based on ORCHIDEE's simulations			
			$\begin{split} S_{h+1} &= S_h + \eta_{phs} * \overline{G}_h + Inflows_h - Rmin_h - Relec_h \\ G_h &\leq Spill_pot_h + Relec_h \\ G_h &\leq Pmax_h \end{split}$		
*PHS: Pumped-F	wdro Storage		$\overline{S}_{h+1} = \overline{S}_h + G_h + Inflows_p_h - Rmin_p_h - Rpump_h$ $\overline{G}_h \le Spill_pot_p_h + Rpump_h$ $\overline{G}_h \le \overline{Pmax_h}$		
FIIS. Fumpeu-r	Iyulu Slulaye				

Results: Comparison of hydropower generation simulated by EOLES in 2016 for both methods

Better representation of constraints on reservoir plants generation


French power system cost: 6.026 b€ vs 6.084 b€

Daily production reservoirs (GWh)

Account for the flexibility of poundage plants

French power system cost: 6.084 b€ (fixed capacity factor) vs 5.997 b€ (flexibility)

in	rep	Mar	Apr	May	jun	jui	Aug	Sep	OCT	NOV	Dec
				,	,	,	5				

RMSE - Simulations compared to observations			
	Old method	New method	
Reservoir production	232 GWh	185 GWh (-17%)	
PHS production	144 GWh	116 GWh (-13%)	
PHS pumping	131 GWh	110 GWh (-16%)	

Conclusion and perspectives

- We propose a new method to constrain hydropower production in power system models based on outputs from a hydrological model.
- This new method significatively improves simulated hydropower generation schedule as it ensures consistency with water management simulated in the hydrological model.
- > A promising method to explore the impacts of water resource constraints on power system performance

Laure BARATGIN laure.baratgin@lmd.ipsl.fr

