# **Future photovoltaic power at the Atacama and Sonora deserts under climate change**



**VWS**: surface wind

S. Bayo-Besteiro<sup>1</sup>, L. de la Torre<sup>1</sup>, X. Costoya<sup>1</sup>, A. Pérez-Alarcón<sup>1</sup>, M. Gómez-Gesteira<sup>1</sup>, M. deCastro<sup>1</sup> and J. A.  $A\tilde{n}el^1$  (s.bayo@uvigo.es)

EPhysLab CIM-UVigo, Universidade de Vigo, Ourense, Spain

# **INTRODUCTION**

Irradiance is the main variable for solar power, although temperature plays a role too in the efficiency of a solar installation. The Atacama desert (Chile) and the region of Sonora (Mexico) have some of the greatest irradiance levels; thus, its solar power installed capacity has experienced a significant boost in the last years. Knowledge of potential future photovoltaic resource ( $PV_{res}$ ) is key to improving the profitability and efficiency of a solar installations. Here, we analyse future variations in the  $PV_{res}$  in these regions combining models and observations, in collaboration with Acciona Energia, which owns solar plants in these areas.

# **METHODOLOGY**

- **Regions:** Atacama (Chile) and Sonora (Mexico); specifically 5 solar plants owned by Acciona Energia.
- **Periods:** 2020-2040 (near-future) & 2041-2060 (mid-term).
- Data: 1) In-situ Meteorological data from Acciona Energia 2) CORDEX simulations (3 models) 3) ERA5 Reanalysis

•  $\mathbf{PV}_{res} = \alpha_1 \operatorname{RSDS} + \alpha_2 \operatorname{RSDS}^2 + \alpha_3 \operatorname{RSDS} \cdot \operatorname{TAS} + \alpha_4 \operatorname{RSDS} \cdot \operatorname{VWS}$ **TAS**: surface temperature **RSDS**: shortwave radiation

#### RESULTS

Image 1. Atacama (left) and Sonora (right): Projected change in % days in the RCP8.5 scenario compared to the historical period (1980-2015) with  $PV_{res}$  in the <25<sup>th</sup>, 25<sup>th</sup>-50<sup>th</sup>, 50<sup>th</sup>-75<sup>th</sup>, and >75<sup>th</sup> percentiles as a function of RSDS and TAS.



Image 3.(Left) Contribution of change in TAS to the changes of  $\Delta PVres$  (%) for the near future (a,c) and mid-term future (b,d) under the RCP2.6 (a,b) and RCP8.5 (c,d) compared to 1980-2015. (Right) Similar to left plots but for the contribution of surface wind. The plot shows the multimodel mean. Region: Atacama desert.



Image 2  $\triangle PVres$  (%) for the near future (a,c) and mid-term future (b,d) under the RCP2.6 (a,b) and RCP8.5 (c,d) compared to 1980-2015. The image shows the multimodel mean. Region: Atacama desert.



<u>Table 1.</u>  $\Delta PVres(\%)$  and the contribution of changes(\%) in TAS, VWS and RSDS to the changes of  $\triangle PVres$  for RCP2.6 and RCP8.5 and for the near future and mid-term. Region: Atacama desert.

|                                                                | RCP2.6      |             | RCP8.5      |             |
|----------------------------------------------------------------|-------------|-------------|-------------|-------------|
|                                                                | (2021-2040) | (2041-2060) | (2021-2040) | (2041-2060) |
| $\Delta PV_{res}$ (%)                                          | 1.23        | 0.52        | 1.53        | 1.72        |
| Contribution of changes<br>in TAS to $\Delta PV_{res}(\%)$     | 12.91       | 19.52       | 13.62       | 15.75       |
| Contribution of changes<br>in scfWind to $\Delta PV_{res}$ (%) | 0.3         | -0.27       | -0.34       | 0.16        |
| Contribution of changes<br>in RSDS to $\Delta PV_{res}(\%)$    | 86.79       | 81          | 86.72       | 84.08       |

### CONCLUSIONS

- The % of deviation in the  $PV_{res}$  computed from CORDEX from the value from ERA5 is less than 3%.
- Changes in RSDS are the main cause of changes in  $PV_{res}$ . The increase of TAS accounts for 14%-16% of the decreases of  $PV_{res}$  (RCP8.5).
- Under the RCP2.6  $PV_{res}$  decreases 1.23% for the near future and 0.52% for the mid-term.
- Under the RCP8.5  $PV_{res}$  decreases 1.53% for the near future and 0.77% for the mid-term.

### References

Jerez et al. (2015) Nat. Commun., 6, 10014. DOI: 10.1038/ncomms10014. Varela et al. (2022). Int. J. Climatol., 42(4), 2195-2207. DOI: 10.1002/joc.7360. Costoya et al. (2020) Appl. Energy 262, 114537. DOI: 10.1016/j.apenergy.2020.114537. Ascencio-Vásquez et al. (2019) Sol. Energy, 191. DOI: 10.1016/j.solener.2019.08.072.

Bayo-Besteiro et al. Photovoltaic power resource at the Atacama Desert under climate change (under review.)

## Acknowledgements

