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« A major transformation to mitigate climate change implies a rapid decarbonisation of the energy system and thus, increasing the use of renewable energy sources, such as wind power. However, renewable 5‘
resources are strongly dependent on local and large-scale weather conditions, which might be influenced by climate change. —— —
« Weather-related risk assessments are essential for the energy sector, particularly for power system management decisions, for which forecasts of climatic conditions from several weeks to months (i.e. sub- 5‘:5 /
seasonal scales) are of key importance. The sensitivity of renewable dominant power systems to weather and climate variability has raised concern about reliability and the potential for wind droughts, / ( E
periods of low wind speed, which are gaining attention not only in the scientific community but also in the energy sector [1, 2]. —=

trade power on the markets.

;
« Wind droughts can occur at Subseasonal-to-seasonal (S2S) timescales, thus, providing skilful predictions of wind speed offer an opportunity to the wind energy sector for maintenance tasks and optimally O VJM

Objective S — % /
« Building upon the success of recent machine learning applications for weather prediction [3, 4, 5], we propose a data-driven approach to improve the prediction of wind speed of days-to-weeks in advance, ‘Q\ S0 Y '

{ (% B X
which can benefit the energy sector. " Q)? \}*5\.

* |n particular, we aim at developing a data-driven ML approach to forecast wind droughts episodes at long timescales (days-to-weeks), which have a strong impact on the energy sector. T ———
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* Provide further insights to assess the feasibility of data-driven ML for predicting weather extreme events.

Fig. 1. Wind speed (10m) anomalies corresponding to 2021 JJA with respect
to the reference period 1979-2020.

Data and Methods We propose two based models:

 Model A: To create iterative predictions up to 42 days (lead times).
« Model B: After the training, with outcomes of low wind extremes, model B aims at forecasting low wind speed events (i.e., WD) at longer lead times using the iterative predicted fields model A.

ERA 51: 1959-2021
Time resolution: Daily (original hourly)

Spatial resolution: 1° x1° (original 0.25° x 0.25°) Model A Model B
Variables: Levels:
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Fig. 2. Example of one day with the highest number of low wind (<10th) occurred in t4id t+id
1980-08-02.

Preliminary results

True=ERAS5 400 10
['ERAS', 'Z', ‘'m’] ['ERAS', 'msl', 'Pa'] ['ERAS', 't2m’, 'K'] ['ERAS, 'tcw’, 'kgm-2'] ~ —_
q < = ~ - = = o 'm T 0.8
: » s ) o | . 0 / n
= ./(? 290 £ — E 06
(__..:., P e 103000 % 200 - p— Persistence Q
Op P 280 OE: — Weekly clim. g 0.4 -
. Al F102000 P /' = WNet o
P ar N 270 o 100 - e UNet-SimpleConv 8 02 .
S EINC m e UNet-EnDe-Conv N &
!/ T~ 2 . Resnet
0 I ] I Ll Ll Ll Ll L 0.0 Ll Ll Ll L
['UNet', ‘msl", "Pa’] 0 5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 35 40
_)_:f T |a-104000 300 days 1.0 days
= ' 290 5 1300 - B
({i__) o Im rv_——/‘/\/\ ‘T e
o, SO 280 ~. 1200 - -
igd 102000 E E 06
e N 4 270 w 1100 - =
e P 2 e O
- 260 & 1000 =0
(a1 |
@ 90 ‘é 0.2 -
['UnteConv-Bottleneck’, ‘msl’, 'Pa’] ['UnteConv-Bottleneck’, ‘t2m’, 'K'] =
3 7 104000 5 T 300 L : , : ; : : : ; R — — —
= / = 0 5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 35 40
S et 290
o / 103000 days 10 days
Do [[02000 270 v A
{ /8 s s <z
o i . W , o 0.6
, & 2 81 §
o
['UnteConv-EnDe’, ‘msl’, 'Pa’] ['UnteConv-EnDe’, ‘t2m’, 'K'] £ 61 & 0.4
3 T 104000 55 s 300 N o
o~ _— | o — _—— 1 30 4 - 0.2
o > / ’/_f(.__ S 290 / - ‘ |
e { 103000 . | G § ] M—,—
3\ ~ : & 20 2 T T T T T T T T 0.0 T T T
O%;"' — . 0 5 10 15 20 250SO 35 40 0 5 10 15 20 25 30 35 40
S 102000 2 S ] 10 days 10 days
{ { NS\ Y
P o—anm SN 17.5 -
( 260 , 0.8
['Resnet’, 'msl', 'Pa’] ['Resnet’, 'tcw’, ‘kgm-2'] w 15.0 -
I g \_;; gy, —~ n 8 0.6 1
- B 104000 300 _ = E 125 - x
e / ¢ 103000 =0 o S 100 D 04
2 DS~ = AL~ [F20 =
N Se 280 N, S
£ £ 151 ~/ 0.2
Al 102000 ) Al 10
{_) AN 270 S - »
i g T =~ 0o 5 10 15 20 25 30 35 40 "0 5 10 15 20 25 30 35 40
days days
Fig. 3. Comparison of predicted fields for 2021-07-01 deriven from model A for several deep learning architectures: The top row shows the ERA5 (ground F'g' 4'NE\;a|$ﬁt't°n ltmettrllcs. ro%t' r?ean squarehgrror (TI\QSEﬂ) a?d .alnorT’:ﬁIy co;rellatlon coefficient (ACC) calculated at different lead
truth) for Geopotential (Z500) ,mean sea level pressure (msl), surface temperature (2m) and total column water vapor (tcwv). HNES- N Ol R A =CCkR 3 PDI0ach ISEERRIET alter T2iing He MOCeIs

Ongoing and future work

Four different DL architectures have been tested as Model A and consequently used for Model B.
Yet, the noise and uncertainties are the main challenges to predict long-term low wind speeds conditions.

Future steps:

Improve the accuracy of Model A by using pre-trained existing DL models that have recently showed promising results for weather forecast, such as, Pangu-Weather [4] or FourCastNet [5] is a purely data-driven DL weather model. b
Regarding Model B, we could improve the model accuracy to predict wind droughts simply using deeper and/or wider networks.
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