An Innovative Bias Correction Method for Extreme Events for Seasonal Energy Management

Marcello Petitta (a,b), Laura Trentini(a), Sara Dal Gesso(a), Marco Venturini (a), Federica Guerrini (a), Sandro Calmanti (c) (a) Amigo s.r.l. – Rome- Italy (b) University of Rome "Tor Vergata" Department of Enterprise Engineering (c) ENEA, SSPT-MET-CLIM, Roma.

Abstract

When one is using climate simulation outputs, one critical issue to consider is the systematic bias affecting the modelled data. The bias correction of modelled data. The bias correction of modelled data is often used when one is using impact models to assess the effect of climate events on human activities. However, the efficacy of most of the currently available methods is reduced in the case of the limited number of data for these low probability and high impact events. In this study, a novel bias correction methodology is proposed, which corrects the bias of extreme events. To do so, we extended one of the most popular bias correction techniques, i.e., quantile mapping (QM), by improving the description of extremes through a generalised extreme value distribution (GEV) fitting. The technique was applied to the daily mean temperature and total precipitation data from three seasonal forecasting systems: SEAS5, System7 and GCFS2.1. The bias correction efficiency was tested over the Southern African Development Community (SADC) region, which includes 15 Southern African countries. The performance was verified by comparing each of the three models with a reference dataset, the ECMWF reanalysis ERA5. The results reveal that this novel technique significantly reduces the systematic biases in the forecasting models, yielding further improvements over the classic QM. For both the mean temperature and total precipitation, the bias correction produces a decrease in the Root Mean Squared Error (RMSE) and in the bias between the simulated and the reference data. After bias correctly predict the temperature extreme increases. On the other hand, the number of members identifying is correctly predict the temperature extreme increases. precipitation extremes decreases after the bias correction.

Methodology	
$y = h(x) \rightarrow CDF_y(y) = CDF_x(x)$	(1)
$y = CDF_y^{-1} \left(CDF_x \left(x \right) \right)$	(2)
$CDF(x;\mu;\sigma;\xi) = exp\left\{-\left[1+\xi\left(\frac{x-\mu}{\sigma}\right)\right]^{-1/\xi}\right\}$	(3)

Temperature extreme identification

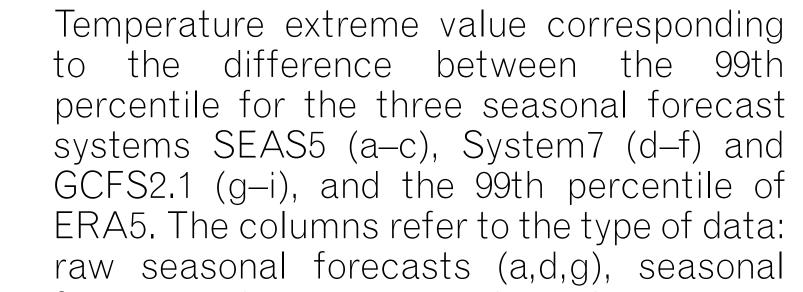
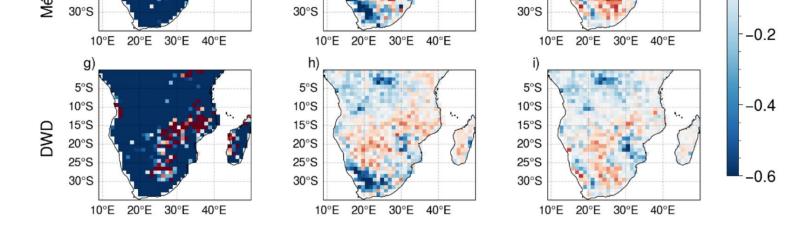



Table 1. The three forecasting systems in the Copernicus Climate Change Service (C3S) and their original configurations.

Forecasting System Name	Forecasting Centre	Hindcast Ensemble Size	Hindcast Period	Horizontal Resolution	Reference
SEAS5	ECMWF	25	1981-2016	$1^{\circ} \times 1^{\circ}$	[34]
System 7	Météo-France	25	1993-2018	$1^{\circ} imes 1^{\circ}$	[35]
GCFS2.1	DWD	30	1993–2019	$1^{\circ} \times 1^{\circ}$	[36]

10°E 20°E 30°E 40°E

10°E 20°E 30°E

data corrected with quantile forecast mapping (b,e,h), and seasonal forecast data corrected with the proposed bias correction method (c,f,i). Maps refer to January and lea

Proposed method

10°E 20°E 30°E 40°E

10°E 20°E 30°E 40°E

20°E

-40

20

5°S

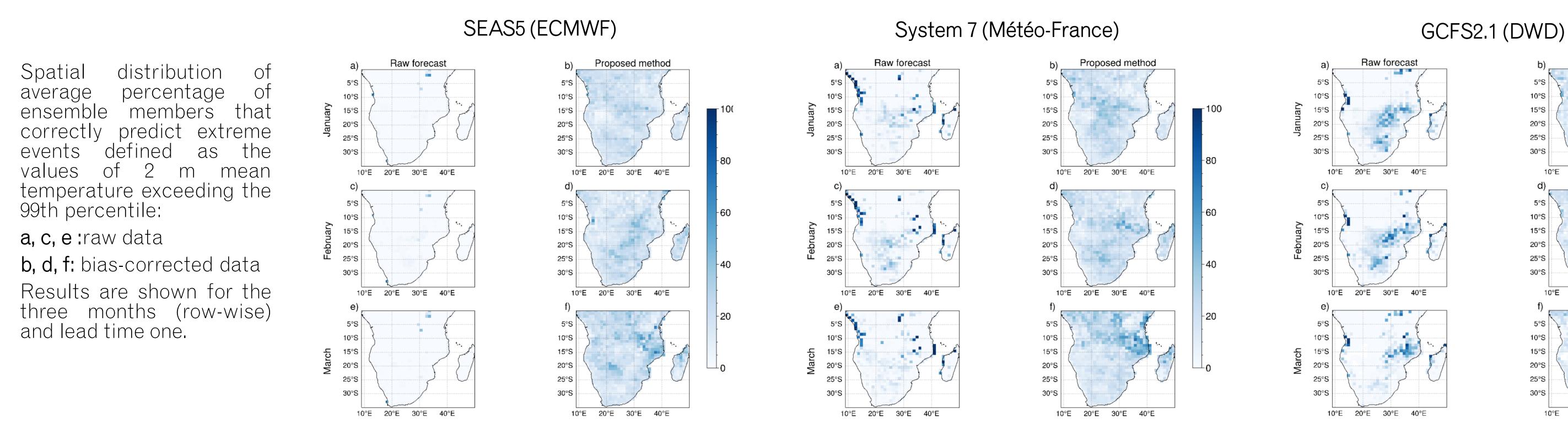
10°S

20°S

25°S

30°S

20°S


25°S

30°S

20°S

25°S

Extreme Temperature spatialization

Temperature Validation

Precipitation Validation

	SEAS5 (ECMWF)								
a)		RAW forecast		b)	Pr	oposed methe	od		
·	January I	February	March	·	January	February	March		
÷	0.47	0.52	0.41	 -	17.37	18.73	21.90		
∾ -	0.55	0.33	0.57	∾ -	17.09	17.78	21.07		
time 3	0.55	0.40	0.48	time 3	15.82	17.01	19.63		
Leadtime	0.52	0.51	0.52	Leadtime 4	16.68	18.09	19.67		
- מ	0.48	0.71	0.55	– م	16.02	17.53	20.51		
- ن	0.48	0.42	0.46	9 –	15.47	16.10	18.40		

a)	l	Syste RAW forecast	m 7 (N	lété		ance)	od
,	January	February	March	,	January	February	March
~ -	6.04	7.02	5.95		18.01	19.02	21.90
Q -	5.08	7.31	6.03	∾ -	16.33	17.54	21.33
Leadtime 3 -	5.45	6.68	6.32	Leadtime 3	16.37	17.23	20.31
- 4 -	5.57	6.19	6.43	Leac	17.03	17.30	20.46
– م	4.99	6.17	5.76	– מי	16.74	16.82	19.63
യ -	1.85	2.76	3.36	ဖ –	5.37	7.98	10.23

3.29 3.14	February 8.52 8.12	March 6.16 7.89	ci -	January 15.27 14.86	February 16.74 15.36	March 15.13 17.90
			ci -			
3.14	8.12	7.89	ณ -	14.86	15.36	17.90
0.10	8.07	8.99	Leadtime 3 1	15.24	14.76	18.59
).42	10.83	9.22	4 -	13.38	14.75	16.46
3.79	6.72	5.64	– م	5.80	7.71	8.22
)	.42	.42 10.83	.42 10.83 9.22	9.42 10.83 9.22 • -	9.42 10.83 9.22 • - 13.38	10.42 10.83 9.22 + − 13.38 14.75

	SEAS5 (ECMWF)							
a)		RAW forecast		b)	Pr	oposed metho	bd	
	January	February	March		January	February I	March	
. -	19.33	21.11	23.13	. -	12.70	12.60	13.09	
~ - v	19.09	20.55	22.30	N -	12.58	12.20	12.84	
Leadtime 3	19.65	21.13	22.26	Leadtime 3	12.53	12.51	12.67	
- 4 -	19.48	21.29	22.47	- Lead	12.41	12.36	12.63	
– م	20.11	21.26	22.90	– C	12.80	11.87	12.83	
- a	20.11	22.16	22.66	- Q	12.28	12.47	12.62	

Mean percentage of ensemble members correctly predicting 2 m mean temperature over the 99th percentile value for seasonal forecast: (a) raw data and (b) data corrected with the proposed bias correction method. The colour scale ranges from white (0%) to dark blue, increasing in intensity as the percentage increases.

Mean percentage of ensemble members correctly predicting total precipitation over the 99th percentile value for seasonal forecast SEAS5 (ECMWF): (a) raw data and (b) data corrected with the proposed bias correction method.

RMSE analysis for 2m Temperature

RMSE analysis for Precipitation

SEAS5 (ECMWF)	System 7 (Météo-France)	GCFS2.1 (DWD)	SEAS5 (ECMWF)	System 7 (Météo-France)	GCFS2.1 (DWD)
a) RAW forecast b) Quantile Mapping c) Proposed method January February March January February March January February March	a) RAW forecast b) Quantile Mapping c) Proposed method January February March January February March January February March	a) RAW forecast b) Quantile Mapping c) Proposed method January February March January February March January February March	a) RAW forecast b) Quantile Mapping C) Proposed method January February March January February March January February March	a) RAW forecast b) Quantile Mapping c) Proposed method January February March January February March January February March	a) RAW forecast b) Quantile Mapping c) January February March January February March
o - 4.27 4.23 4.15 o - 0.16 0.14 0.13 o - 0.15 0.12 0.11	o - 3.27 3.19 3.13 o - 0.15 0.15 0.14 o - 0.14 0.12 0.09	o − 3.25 3.57 3.15 o − 0.21 0.21 0.14 o − 0.21 0.19 0.11	□ = 0.013 0.012 0.012 □ = 0.003 0.004 0.005 □ = 0.003 0.004 0.003	o - 0.378 0.345 0.326 o - 0.009 0.009 0.009 o - 0.004 0.004 0.004	o - 0.222 0.208 0.196 o - 0.005 0.005 0.005 o -
- 4.25 4.05 3.97 - 0.20 0.15 0.13 - 0.14 0.12 0.10	-3.25 3.12 3.07 -0.19 0.15 0.14 -0.14 0.12 0.09	3.03 3.15 2.87 - 0.19 0.15 0.13 - 0.14 0.12 0.10	- 0.012 0.012 0.012 - 0.003 0.004 0.005 - 0.003 0.004 0.003	- 0.674 0.678 0.627 - 0.022 0.021 0.021 - 0.008 0.007 0.007	0.433 0.436 0.400 0.007 0.007 0.007
$\infty = 4.20$ 4.00 3.87 $\infty = 0.20$ 0.16 0.13 $\infty = 0.14$ 0.12 0.11	$\infty = 3.30$ 3.11 3.10 $\infty = 0.18$ 0.15 0.14 $\infty = 0.14$ 0.12 0.09		$\infty - 0.013$ 0.012 0.012 $\infty - 0.003$ 0.004 0.005 $\infty - 0.003$ 0.004 0.003	$\infty = 0.886$ 0.951 0.928 $\infty = 0.032$ 0.035 0.036 $\infty = 0.016$ 0.016 0.016	
$\begin{bmatrix} m & - & 4.16 & 3.93 & 3.85 \\ m & - & 0.20 & 0.16 & 0.15 \end{bmatrix} \begin{bmatrix} m & - & 0.20 & 0.16 & 0.15 \\ m & - & 0.14 & 0.12 & 0.10 \end{bmatrix}$	$ \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 &$	μ μ μ μ μ μ μ μ μ μ μ μ μ μ	^θ _μ	$ \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 0$	eggina (2000) (2
$rac{1}{rac{1}{2}}$ = 4.18 3.93 3.82 $rac{1}{rac{1}{2}}$ = 0.20 0.15 0.14 $rac{1}{rac{1}{2}}$ = 0.14 0.12 0.10	-7 - 3.38 3.25 3.09 -7 - 0.19 0.15 0.14 -7 - 0.14 0.12 0.09		+ - 0.013 0.012 0.012 + - 0.003 0.004 0.005 + - 0.003 0.004 0.003		
0.14 0.12 0.10 – ما 3.92 3.78 – ما 4.21 - ما 3.92 0.16	0.09 0.14 – مبا 0.15 0.14 – مبا 3.48 – مبا 3.48 – مب	→ - 2.58 2.63 2.42 → - 0.20 0.14 0.12 → - 0.14 0.11 0.08	ω – 0.013 0.013 0.012 ω – 0.003 0.005 0.005 ω – 0.003 0.004 0.003	- م 0.027 0.033 0.041 - م 0.054 0.054 - م	0.715 0.864 0.970 - 0.021 0.026 0.032
ω - 4.17 4.00 3.75 ω - 0.19 0.15 0.15 ω - 0.14 0.12 0.10	ω – 3.52 3.35 3.22 ω – 0.21 0.16 0.15 ω – 0.14 0.12 0.10	ω – 2.52 2.61 2.26 ω – 0.21 0.14 0.13 ω – 0.14 0.11 0.09	ω - 0.013 0.013 0.012 ω - 0.003 0.004 0.005 ω - 0.003 0.003 0.003	ω – 1.086 1.334 1.528 ω – 0.044 0.054 0.066 ω – 0.027 0.035 0.043	un – 0.740 0.888 1.034 un – 0.022 0.027 0.036 un –

RMSE (in K) of the 2 m mean temperature 99th percentile value for three seasonal forecast model compared to ERA5 reanalysis: (a) raw data, (b) data corrected with standard quantile mapping and (c) corrected with the proposed bias correction method. The colour scale ranges from white (RMSE = 0) to dark red, increasing in intensity as the metric increases. The most intense colour corresponds to the maximum value

RMSE (m) of the total precipitation 99th percentile value for three seasonal forecast models compared to ERA5 reanalysis: (a) raw data, (b) data corrected standard with quantile mapping and (c) data corrected with the proposed bias correction method. The colour scale ranges from white (RMSE = 0) to dark red, increasing in intensity as the metric increases. The most intense colour corresponds to the maximum value

M.P. thanks the European Union FSE-REACT-EU, PON Research and Innovation 2014-2020 DM1062/2021 and the European Commission's Horizon Europe programme under grant agreement GA101096056 for the financial support. L.T., S.D.G, M.V., M.P. and F.G. thank the Horizon 2020 project Focus Africa under grant agreement GA869575 and the Horizon 2020 Project REACH for the financial support.

- 0.012 0.014 0.016

+ - 0.014 0.017 0.02

μ₋ 0.016 0.019 0.025