Testing grid restoration with wind power plants FCR provision and distributed power forecasts

ENERGY FOR THE WORLD

Lukas Holicki^{1*}, Achim Abels¹, Gregor Schürmann¹, Manuel Dröse¹, Marcus Letzel¹, Tammo Flessner², Udo Schauerte³, Thomas Schmidt³

¹Wobben Research and Development GmbH, Aurich, Germany ²Alterric GmbH, Aurich, Germany

³Westnetz GmbH, Dortmund, Germany

*Email: Lukas.Holicki@enercon.de, ORCID: 0000-0002-3126-0484

Motivation

Grid restoration typically requires the generation units to supply a predictable active power level as well as frequency containment ancillary services. In order to enable WPPs to contribute significantly to grid restoration strategies, we present a performance evaluation of two key components:

- decentralized blackout-safe forecasts, which provide the grid operator even in critical situations with crucial information about $P_{Available}$, thus enabling FCR provision, and
- a dedicated power-frequency control mode (incident control), which is especially parametrized for grid restoration scenarios.

Both components were tested both in a laboratory environment as well as in an actual wind power plant (WPP).

	Voltage PCC				
nd 1					
.⊑ aboos		blackout			
olta		← voltage r	eturn		

conducted at the Laboratory for electrical energy systems at the Jade University of Applied **Sciences**

<u>Test objectives:</u>

activation sequence (manually)

and automatically)

frequency containment (via f-

setpoint changes)

blackout tests (U=0 V at PCC,

then return sequence)

Field test WPP, operated by **Alterric**, within the **Westnetz** distribution grid

Incident control

- optimizes the operation and integration of wind power plants
- during critical grid situations and during grid restoration by
- providing a variable f-setpoint and an integrated P(f)-curve
- preparation of the WPP for quick reconnection upon voltage restoration
- extended control access for the grid operator

Conclusion & outlook

the decentralized forecasting infrastructure provided a high level of forecast reliability,

especially in the nowcasting range

Iaboratory tests provided an effective and cost-saving way to parametrize the incident

mode

with the field tests we were able to provide evidence, that WPPs can effectively be used to support grid restoration

Federal Ministry

Supported by:

緣

References

- Holicki, L., Abels, A., Nikolai, S., Schürmann, G., Schauerte, U., Schmidt, T., & Fleßner, T. (2022). Employing wind power plants in grid restoration processes- a field testing. Wind & Solar Integration Workshop. Den Haag, Netherlands.
- Holicki, L., Dröse, M., Schürmann, G., & Letzel, M. O. (2022). Decentralized forecasting of wind energy generation with an adaptive machine learning approach to support ancillary grid services. EMS Annual Meeting. Bonn, Germany.
- Holicki, L., Abels, A., Dröse, M., Schürmann, G., Flessner, T., Nikolai, S., Schauerte, U. Schmidt, T. (2023). Grid restoration ~ *utilizing wind power plants.* IET Renewable Energy Generation. (in review)

Parts of the presented research has been carried out in the joint research project "SysAnDUk" ("Systemdienliche Anforderungen an Dezentrale for Economic Affairs Erzeugungsanlagen zur Unterstützung in kritischen and Climate Action Netzsituationen und des Netzwiederaufbaus" by distributed Ancillary services provided generators to support network operators in critical grid situations and during system restoration) (FKZ on the basis of a decision 03EI4004A) funded by the German Federal Ministry by the German Bundestag for Economic Affairs and Energy.

Marcus Letzel

© Copyright ENERCON GmbH. Alle Rechte vorbehalten.