

## Implementation of customized hydropower model for enhancing the hydropower generation in Tanzania

Omari Hamisi, Kristian Nielsen, Penny Boorman and Alberto Troccoli Presented by Alberto Troccoli

29 June 2023





This project has received funding from the European Commission's Horizon 2020 Research and Innovation programme under grant agreement n°869575. The content of this presentation reflects only the author's view. The European Commission is not responsible for any use that may be made of the information it contains.

Icem

2023



#### 1. Introduction

- 1.1. Background: Tanzania's energy sector and significance of hydropower
- 1.2. Objective of the case study

#### 2. Methodology

- 2.1. Data collection and sources specific to Tanzania's energy sector
- 2.2. Pre-processing, feature selection
- 2.3. Random forest algorithm for hydropower modeling in Tanzania

#### 3. Results and discussion

- 3.1. Importance of input features in predicting hydropower generation in Tanzania
- 3.2. Performance evaluation metrics specific to the case study
- 3.3. Comparison of predicted vs. actual hydropower generation

#### 4. Challenges and Limitations

4.1. Limitations of the random forest model in the Tanzanian energy context

#### 5. Conclusion

#### 6. References

## **1. Introduction**



- Tanzania, situated on the eastern coast of Africa, is bordered by Kenya and Uganda to the north, Rwanda, Burundi, and the Democratic Republic of the Congo to the west, and Zambia, Malawi, and Mozambique to the south.
- Its strategic location provides access to various rivers and water bodies, making it an ideal location for hydropower generation.
- Tanzania is blessed with numerous rivers, lakes, and water bodies, which contribute to its vast potential for hydropower generation.
- Tanzania is one of the few country in Africa that has many transboundary water resources (14 in total)

#### TANZANIA Atlas of the Hydropower Resource (0.3-10 MW)





World Energy & Meteorology Council

### **Tanzania Hydrological Basins**

- Those transboundary water resources are part of the 9 Lake/River basins.
  Those 9 lake/river basins are
  - 1. Pangani Basin
  - 2. Wami/Ruvu Basin
  - 3. Rufiji Basin
  - 4. Ruvuma Basin
  - 5. Lake Nyasa Basin
  - 6. Internal drainage Basin
  - 7. Lake Rukwa Basin
  - 8. Lake Tanganyika Basin
  - 9. Lake Victoria Basin
- Among the 9 Lake/River basins 7 of them are transboundary while only 2 (Rufiji and Wami/ ruvu) are not transboundary.
- Rufiji is the largest Basin and most of the hydropower plants are located there



Figure1. Lake/River basins with their associated river channels



Figure2. Lake/River basins and elevation.



World Energy & Meteorology Council

## **Tanzania Hydrological Basins**

Several studies have indicated that Tanzania is the country that has many area where the small hydropower plants can be established.

Some of those studies include.

Ombeni J Mdee et al 2018 (as shown in the map)

Baraka Klchonge, 2018 (Indicated **75 small hydropower plant sites**)





# Despite of having many water resources with various promising area for establishing new hydropower plants but still the **dependence of hydropower generation in Tanzania decreased from 96% in 2003 to 34% in 2015.**

## Initiatives in enhancing hydropower generation in Tanzania

As part of its initiative to enhance hydropower production, Tanzania is currently undertaking the Julius Nyerere Hydropower Project, which is expected **to generate an impressive capacity of 2,115 MW.** This project reflects Tanzania's commitment to expanding clean and renewable energy sources for sustainable development.



#### **1. Introduction: Objective of CS6**

#### Despite of initiative taken in Tanzania;

Tanzania's hydropower sector is vulnerable to climate variability and change, highlighting the need for strategies that consider climate factors to ensure sustainability and resilience.

The Case study 6 under the FOCUS-Africa Project aims to develop a cutting-edge hydropower model that will incorporate climate parameter and hence better planning of the hydropower generation in Tanzania.

The hydropower model will focus on six main hydropower plants (Shown on the map with rectangle shape) with a data spanning from 2008 to 2022.

#### LIST OF HYDROPOWER PLANTS IN TANZANIA





## WEMC World Energy & Meteorology Council

## **Hydro Power plants considered**

| Hydropowe<br>r plant | Installed<br>capacity<br>(MW) | Plant factor/<br>performanc<br>e (%) | Annual ge<br>neration<br>(GWh) | Generation<br>type |
|----------------------|-------------------------------|--------------------------------------|--------------------------------|--------------------|
| Kidatu               | 204                           | 31                                   | 558.34                         | Reservoir          |
| Kihansi              | 180                           | 50                                   | 793.49                         | Run-of-river       |
| Mtera                | 80                            | 24                                   | 166.68                         | Reservoir          |
| Hale                 | 21                            | 20                                   | 36.11                          | Run-of-river       |
| New Panga<br>ni      | 68                            | 23                                   | 137.2                          | Reservoir          |
| Nyumba ya<br>mungu   | 8                             | 31                                   | 21.53                          | Reservoir          |





## **Climatological characteristics**

The meteorological stations situated in the hydropower plant catchment area together with their rainfall and temperature annual cycle.





#### SIMULATION OF HYDROPOWER GENERATION

WEMC

World Energy &

Meteorology Council





## **Importance variable assessment**





## **Result and Discussion**

#### Simulation using Precipitation and temperature

| Hydropower pl<br>ant | simulation | Correlation | Root Mean<br>Square Error<br>(normalized) |
|----------------------|------------|-------------|-------------------------------------------|
| Kihansi (KHI) –      | Round 1    | 0.8113      | 0.2074                                    |
| RoR                  | Round 2    | 0.7646      | 0.2297                                    |
| Pangani (NPF)        | Round 1    | 0.3582      | 0.5324                                    |
| – RES                | Round 2    | 0.35121     | 0.5473                                    |
| Kidatu (KDT) -       | Round 1    | 0.3505      | 0.28590                                   |
| RES                  | Round 2    | 0.3180      | 0.2944                                    |
| Mtera (MTR) -        | Round 1    | 0.3599      | 0.3468                                    |
| RES                  | Round 2    | 0.3704      | 0.3541                                    |

#### Simulation using all predictors listed in previous slide

|  | Hydropower plant         | simulation | Correlation | Root Mean Square<br>Error (normalized) |
|--|--------------------------|------------|-------------|----------------------------------------|
|  | Kihansi (KHI) – RoR      | Round 1    | 0.9942      | 0.0384                                 |
|  |                          | Round 2    | 0.9953      | 0.0346                                 |
|  | , Pangani (NPF) –<br>RES | Round 1    | 0.99095     | 0.0765                                 |
|  |                          | Round 2    | 0.9911      | 0.0749                                 |
|  | Kidatu (KDT) - RES       | Round 1    | 0.9945      | 0.0307                                 |
|  |                          | Round 2    | 0.9953      | 0.0282                                 |
|  | Mtera (MTR) - RES        | Round 1    | 0.9756      | 0.0865                                 |
|  |                          | Round 2    | 0.9759      | 0.0847                                 |



## **Hydro Power modelling results**







## Hydro Power modelling results





## **Challenges and Limitations**

- The performance of reservoir-based hydropower plants, such as Kidatu, Mtera, and Pangani, has exhibited shortcomings in simulating hydropower generation using precipitation and temperature data. It is plausible that these limitations arise from human operation.
- Nevertheless, the integration of river discharge data has yielded a remarkable enhancement in the simulation of hydropower generation.



- The presented hydropower generation simulation using the random forest model covered the period from 2008 to 2022.
- The next step is to produce seasonal forecast for hydropower generation:
  - This involves bias adjustment of weather forecast models using CDFt based on reference data from CHIRPS for precipitation and ERA 5 land for temperature.
  - This adjustment will improve the accuracy of hydropower generation forecasting and support informed decision-making in the renewable energy sector.





Kichonge, B. (2018). The Status and Future Prospects of Hydropower for Sustainable Water and Energy Development in Tanzania. *Journal of Renewable Energy*, 2018, 1–12. <u>https://doi.org/10.1155/2018/6570358https://doi.org/10.1155/2018/6570358</u>

Ho, L. T. T., Dubus, L., de Felice, M., & Troccoli, A. (2020). Reconstruction of Multidecadal Country-Aggregated Hydro Power Generation in Europe Based on a Random Forest Model. *Energies*, *13*(7), 1786. <u>https://doi.org/10.3390/en13071786</u>

Mdee, O. J., Nielsen, T. K., Kimambo, C. Z., & Kihedu, J. (2018). Assessment of hydropower resources in Tanzania. A review article. *Renewable Energy and Environmental Sustainability*, *3*, 4. <u>https://doi.org/10.1051/rees/2018004</u>

Sessa, V., Assoumou, E., Bossy, M., & Simões, S. G. (2021). Analyzing the Applicability of Random Forest-Based Models for the Forecast of Run-of-River Hydropower Generation. *Clean Technologies*, *3*(4), 858–880. https://doi.org/10.3390/cleantechnol3040050

Yawson, D. K., Kashaigili, J. J., Kachroo, R. K., & Mtalo, F. W. (n.d.). Back Modelling the Mtera-Kidatu Reservoir System to improve Integrated Water Resources Management.

World Bank, TANESCO. Small Hydro Resource Mapping in Tanzania. (2018). www.worldbank.org



## Thank you