International Conference Energy & Meteorology (ICEM)

Towards climate-resilient energy systems Galzignano (PD), June 27-29th 2023

Climate Change

International Conference Energy & Meteorology (ICEM 2023)

Hydrological Seasonal Forecast as a Resources Assessment Tool for the Upper Adige Catchment

Zaramella M^{1,2}, Dinale R³, Ghetta S³, Lusito L¹, Cordeddu S¹, Aldrigo G¹, Campostrini S¹, Restivo E¹, Shrestha S², Troccoli A¹, Borga M²

University of Padova – TESAF
 Inside Climate Service s.r.l.
 Office for Hydrology and Dam- Autonomous province of Bozen

CFCMWF

17 sub-basins with area ranging from 77 to 6900 km^2 .

Pacin ID	Pasin ID Nama		Area
Dasini ID	Name	(m asl)	(Km ²)
0	Rio Plima at the Gioveretto Dam	2922	77
1	Rio Plan at Plan	2163	49
2	Rio Riva at Seghe	1831	76
3	Rio Anterselva at Bagni	2072	82
4	Rio Braies at Braies	2188	93
5	Rio Riva at Caminata	1829	115
6	Rio Casies at Colle	2162	117
7	Gadera at Pedraces	1911	125
8	Aurino at Cadipietra	1796	150
9	Ridanna at Vipiteno	1700	210
10	Gadera at Mantana	1915	397
11	Passirio at Merano	1533	414
12	Aurino at Caminata	1887	420
13	Aurino at S.Giorgio	1847	608
14	Rienza at Vandoies	1916	1919
15	Adige at PonteAdige	1878	2732
16	Adige at Bronzolo	1885	6924

opernicus

2022 DROUGHT EVENT

Climate

METHODOLOGY: HYDROLOGICAL MODEL AND SNOWPACK MODEL

Climate Change

TOPMELT (SNOW DYNAMICS) + PDM-ICHYMOD (RUNOFF GENERATION) = <u>HIGH COMPUTATIONAL</u>

PERFORMANCE

TOPMELT (Zaramella et al. 2019):

- Enhanced Temperature Index snowpack model;
- clear Sky Solar radiation;
- frequency distribution function approach;
- monthly averaged incident solar Energy Index (EI [Wm²]) accounting for the visible horizon/shading.

Probability Distributed Moisture Model PDM and ICHYMOD (Moore, 2007; Norbiato et al., 2004):

- Pareto function distribution of the soil retention capacity;
- lumped runoff generation;
- maximum capacity linked to surface lithology.
- input fed by TOPMELT.

Climate

METHODOLOGY: HISTORICAL AND SEASONAL DATASET

OBJECTIVES OF THE APPLICATION DEVELOPMENT

- Assessment of hydrological seasonal forecast skills from 1993 to 2016 (hindcast, 4 models: ECMWF, DWD, ECCC, CMCC (currently under computation).
- Analysis of the performance for major past drought events (2005 and 2022 currently under evaluation, preliminary results presented here).
- Inclusion of hydropower production seasonal forecast by means of random forest approach.
- Inclusion of a crop model.

METHODOLOGY: SKILL ASSESSMENT

Y = number of years (1993-2016) M = number of ensemble member

FOR = Forecast LT = Lead time [da REF = Perfect simulation BEN = Benchmark

Bias

$$Bias(LT) = \frac{1}{Y} \sum_{y=1}^{Y} \frac{Q_{mean-m,y}^{FOR}(LT) - Q_{y}^{REF}(LT)}{Q_{y}^{REF}(LT)}$$
Nash Sutcliffe Efficiency

$$NSE(LT) = 1 - \frac{\sum_{y=1}^{Y} (Q_y^{REF}(LT) - Q_{mean-m,y}^{FOR}(LT))^2}{\sum_{y=1}^{Y} (Q_y^{REF}(LT) - Q_{mean}^{REF}(LT))^2}$$

Spread Error Ratio $SprER(LT) = \frac{1}{Y} \sum_{y=1}^{Y} \frac{\sum_{m=1}^{M} (Q_{y,m}^{FOR}(LT) - Q_{mean-m,y}^{FOR}(LT))^2}{\sum_{m=1}^{M} (Q_{y,m}^{FOR}(LT) - Q_{y}^{REF}(LT))^2}$

 $\begin{array}{ll} \mathsf{LT} = \mathsf{Lead time} \; [\mathsf{days}] & Q^{FOR}_{mean-m,y}(LT) = \\ \mathsf{BEN} = \mathsf{Benchmark} & \mathsf{Mean of runoff over the M members} \\ & \mathsf{for month y} \end{array}$

icem 2023

Change

EVALUATION OF GLACIER MELT IMPACT ON STREAMFLOW – IMPLEMENTATION OF HYDROPOWER

Stephan P. Galos, Christoph Klug & Roberto Dinale "20 Years of Glacier Change: The homogenized glacier inventories for South 3 Tyrol 1997-2005-2017", Geografia Fisica e Dinamica Quaternaria.

- 14 major hydropower plant;
- Glacier flow validation: reconstructed inflow at the Gioveretto dam from 2005 to 2015

PROGRAMME OF THE EUROPEAN UNION

2005

2005 DROUGHT EVENT – RIO PLIMA AT THE GIOVERETTO DAM

0 icem AUTONOME PROVINZ ×. PROVINCIA ICS Inside Climate Service DECLI STUDI DI PADOVA IMPLEMENTED BY AUTONOMA PROGRAMME OF THE EUROPEAN UNION CECMWF opernicus BOZEN **DI BOLZANO** 2023 SÜDTIROL ALTO ADIGE

0

icem

2023

EVALUATION OF GLACIER MELT IMPACT ON STREAMFLOW

Major glacier contribution: Jun-July-Aug-Sep

Months	% Glacier contribution to total runoff			
	Mean	2005	2003	
June- Sept	6.3	8.3	13.3	
August	10.1	2.2	24.8	

BOZEN

SÜDTIROL

DI BOLZANO

ALTO ADIGE

opernicus

ICS

2005 DROUGHT EVENT - ADIGE AT BRONZOLO ECMWF

Change

0

2005 DROUGHT EVENT – ADIGE AT BRONZOLO DWD

2005 DROUGHT EVENT – RIO PLIMA AT THE GIOVERETTO DAM

2005 DROUGHT EVENT – RIO PLIMA AT THE GIOVERETTO DAM

icem

2023

2022 DROUGHT EVENT

- First drought event assisted by the seasonal forecast system.
- Snow drought, satellite image March 5th 2022.
- The snow drought hit the northeastern alps.
- Water scarcity on the plains of the Veneto region.
- Drought observatory created by regional water resources authorities.

UNIVERSITA DECLI STUDI DI PADOVA

icem

2023

2022 DROUGHT EVENT

- First drought event assisted by the seasonal forecast system.
- Snow drought, satellite image March 5th 2022.
- The snow drought hit the northeastern alps.
- Water scarcity on the plains of the Veneto region.
- Drought observatory created by regional water resources authorities.

UNIVERSITA DECLI STUDI DI PADOVA

0

2022 DROUGHT EVENT

2022 DROUGHT EVENT

March 1° 2022, minimum snow water equivalent since 1991

 $WE \cong 80 mm$ $SCA \cong 65\%$

https://climate.copernicus.eu/precipitationrelative-humidity-and-soil-moisture-march-2022

https://www.copernicus.eu/en/media/imageday-gallery/snow-defic-alps-winter-2022

Di Marco, N., Avesani, D., Righetti, M., Zaramella, M., Majone, B., & Borga, M. (2021). Reducing hydrological modelling uncertainty by using MODIS snow cover data and a topography-based distribution function snowmelt model. *Journal of Hydrology*, *599*, 126020.

AUTONOME		PROVINCIA
PROVINZ	80	AUTONOMA
BOZEN	JUN VILL	DI BOI ZANC
SÜDTIROL		ALTO ADIGE

2022 DROUGHT EVENT - DWD

2022 DROUGHT EVENT - ECMWF

icem 2023

State State

UNIVERSITÀ decli Studi di Padova

2022 DROUGHT EVENT

TESAF

AUTONOME PROVINZ BOZEN 1.9 IMPLEMENTED BY PROGRAMME OF THE EUROPEAN UNION opernicus

-0.5

-1.0

PROVINCIA AUTONOMA DI BOLZANO ALTO ADIGE

SÜDTIROL

CECMWF

2022 DROUGHT EVENT

2022 DWD Bronzolo BIAS D8 D7 D6 D5 D4 D3 D2 D1 03ESP 03DWD 04ESP 04DWD 05DWD 06ESP 06DWD 07ESP 07DWD 08ESP 08DWD 09ESP DWD60 05ESP

 Image: State of the state

1.0

0.5

- 0.0

-0.5

-1.0

HYDROPOWER PRODUCTION MODELLING – RANDOM FOREST

SÜDTIROI

ALTO ADIGE

0

icem 2023

HYDROPOWER PRODUCTION MODELLING – RANDOM FOREST

ICS Inside Climate Service

LOYO-validation results of Random Forest predictions for HP generation discharge of AA (REG-level) from AA-stations TAandTP with lag up to 30 weeks

HYDROPOWER PRODUCTION MODELLING – RANDOM FOREST

Climate Change

CONCLUSION and DEVELOPMENT

- Complete skill computation on hindcast: ECMWF, DWD, ECCC, CMCC
- Inclusion of a crop model
- Implementation of a coupled hydrological-RF model, including the SF of HP generation
- Optimization of the RF-HP model for the prediction of extremes.
- Include more metrics

