Evolution of the wet snow hazard for the electricity network in Corsica in 2050

Sylvie Parey, Paul-Antoine Michelangeli EDF/R&D
Aymeric Gadet, EDF SEI
Wet snow and electrical network

• Wet snow is a hazard impacting overhead lines in winter when:
 ▪ A quite large amount of snow falls
 ▪ While temperature is around 0°C => the liquid content of the snow is high
 ▪ Under windy (but not too much) conditions

• This creates overloads on the wires:
 ▪ Snow freezes when hitting the wire (once the wire temperature is lower than 0°C)
 ▪ The overload induces a rotation of the wire, creating an overload which can cause the ruin of the line

• Forecasts are made in winter, and teams are prepared to fix the damaged sections if needed
Data and hazard identification

• Data used
 • EOBS 0.1° dataset 1950-2021: daily minimum and maximum temperature, daily rainfall amount
 • Climate projections: 13 CMIP6 models available at EDF/R&D (through our internal climate service) for which Tmin, Tmax, precip were available at the time of the study for the historical period and SSP1-2.6, SSP2-4.5, SSP3-7.0 et SSP5-8.5
 • Historical reference period: 1995-2014, future period 2041-2060, according to the last IPCC report

• How to identify wet snow events?
 ▪ Design of an « ad hoc » criterium in previous studies, based on comparison with detailed weather data and damage reporting

 \[-4{°}C \leq \text{Tmin} \leq 0.5{°}C \quad \text{AND} \quad -0.5{°}C \leq \text{Tmax} \leq 5{°}C \quad \text{AND} \quad \text{Precip} \geq 10\text{mm}\]

 => Days when the weather conditions are prone to wet snow events
Observations: Comparison to the previous study

Previous study for the period 1984-2001

Yellow: <2 events per year on average

Orange: 2< <4
Observations: rainfall amount during the events

- mean rainfall amount
- maximum rainfall amount per event
Historical period

• Downscaling / bias adjustment of climate projections
 ▪ Statistical method CDFt: 1 climate model grid point downscaled on all E-OBS nearest points

• Average number of events
 ▪ 13 maps (one for each model) compared to the map obtained with observations
 ▪ Computation of the correlations between each model map and the observation-based map with a significance test
 ▪ Good correlations for all models, all significant at the 95% confidence level

• Associated rainfall amounts
 ▪ In the same way: correlations with observation-based map: better results for the maximum rainfall amounts than for the average amount
 ▪ Average amount quite uniforms across the territory => small geographical differences downgrades the correlation level
Future risk

• Non-parametric test for assessing the significance of the projected changes
 ▪ For each grid point and each projection: merge historical values with the projected ones
 ▪ Compute the mean for each period separately (historical / future)
 ▪ Then repeat a large number of times (5000) the following steps:
 - Randomly mix both series of values in order to mix historical and future values
 - Create 2 samples of the same length as the historical and projection samples
 - Compute the mean for each of these new samples (randomly mixing historical and projection results)
 ▪ We then get a distribution of differences between randomly composed sample means
 ▪ If the difference between historical and projection means lies inside the obtained distribution, then the difference is not significant, otherwise, it is

• The testing procedure has been applied to the average number of events and to the maximum rainfall amount per event
 ▪ Difference maps: only the significant differences are plotted
AVERAGE NUMBER OF EVENTS

SSP1-2.6
SSP2-4.5
SSP3-7.0
SSP5-8.5

Grey : non significant
MAXIMUM RAINFALL AMOUNT

SSP1-2.6 SSP2-4.5 SSP3-7.0 SSP5-8.5

Grey : non significant

< -2 -2 < -1.5 -1.5 < -1. -1. < -0.5 -0.5 < 0 0 < 0.5 0.5 < 1. > 1.
Summary

• Selection of days when weather conditions are prone to wet snow events
 • From the observations E-OBS 0.1° over the period 1995-2014
 • From 13 climate model projections
 • For the historical period 1995-2014
 • For the future 2041-2060, with 4 scenarios SSP1-2.6, SSP2-4.5, SSP3-7.0 et SSP5-8.5

• Mean number of days per year
 • Good model performance
 • Significant decrease with scenarios SSP3-7.0 et SSP5-8.5
 • No change with scenarios SSP1-2.6 and SSP2-4.5, temperature increase causes changes from dry snow to wet snow

• Associated rainfall amount
 • Better performance of the models for the maximum than for the average, however lower than for the mean number of days
 • Very few significant changes
Thanks
<table>
<thead>
<tr>
<th>Model</th>
<th>Average number</th>
<th>Average rainfall amount</th>
<th>Maximum rainfall amount</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Correlation</td>
<td>p-value</td>
<td>Correlation</td>
</tr>
<tr>
<td>ACCESS-ESM1-5</td>
<td>0.7912827</td>
<td>7.421525e-27</td>
<td>0.1567308</td>
</tr>
<tr>
<td>AWI-CM-1-1-MR</td>
<td>0.7463606</td>
<td>7.951427e-22</td>
<td>0.07446809</td>
</tr>
<tr>
<td>BCC-CSM2-MR</td>
<td>0.8551668</td>
<td>4.12422e-30</td>
<td>0.01202212</td>
</tr>
<tr>
<td>CNRM-ESM2-1</td>
<td>0.710813</td>
<td>1.470082e-19</td>
<td>0.3797909</td>
</tr>
<tr>
<td>EC-Earth3</td>
<td>0.7503792</td>
<td>5.771744e-21</td>
<td>0.1428571</td>
</tr>
<tr>
<td>FGOALS-g3</td>
<td>0.5635337</td>
<td>1.523686e-12</td>
<td>0.1951952</td>
</tr>
<tr>
<td>GFDL-ESM4</td>
<td>0.8066069</td>
<td>1.0651e-24</td>
<td>-0.00110742</td>
</tr>
<tr>
<td>IPSL-CM6A-LR</td>
<td>0.7727906</td>
<td>1.650019e-25</td>
<td>-0.2031935</td>
</tr>
<tr>
<td>KACE-1-0-G</td>
<td>0.6670304</td>
<td>4.831326e-20</td>
<td>-0.1827431</td>
</tr>
<tr>
<td>MIROC-ES2L</td>
<td>0.741803</td>
<td>1.519033e-20</td>
<td>0.5529412</td>
</tr>
<tr>
<td>MPI-ESM1-2-LR</td>
<td>0.8364353</td>
<td>1.278869e-27</td>
<td>0.0693816</td>
</tr>
<tr>
<td>MRI-ESM2-0</td>
<td>0.7657853</td>
<td>5.640506e-25</td>
<td>0.09423077</td>
</tr>
<tr>
<td>NorESM2-LM</td>
<td>0.7714624</td>
<td>2.918204e-22</td>
<td>0.4954955</td>
</tr>
</tbody>
</table>
MAXIMUM RAINFALL AMOUNT: best performing models only

SSP1-2.6

SSP2-4.5

SSP3-7.0

SSP5-8.5

Grey: non significant

< -2 -2 < -1.5 -1.5 < -1. -1. < -0.5 -0.5 < 0 0 < 0.5 0.5 < 1. > 1.