

Establishment of a climatological frame of reference of cold weather for gas TSOs

<u>Marie CASSAS¹</u>, Agathe DROUIN¹, Florian GIBIER¹, Valérie LAFONT², Raphaël LEGRAND¹, Yann MICHEL¹, Marketa PICHLOVA LALLEMENTOVA², Aurélien RIBES¹

¹METEO-FRANCE, Toulouse, FRANCE ²GRTgaz, Bois-Colombes, FRANCE

ICEM 2023, Padova, ITALY, 27-29th June 2023

Gas transmission in France

- Two actors in France: GRTgaz and Teréga
- **Continuity and safety of gas supply** in the country:
 - Development, maintenance and safety of the network
 - Dispatching to the local and national distribution operators
 - Storage and LNG terminals interfaces management
 - International transit of gas
 - Support to renewable and sustainable gases development

Need for climate services

- Each winter in France, high energy demand for heating
 - Operational decision making to guarantee the balance of the system
 - Depends on meteorological conditions
 - Need for a climatological reference to contextualise each real time situation
 - ightarrow historical values and return times associated
- In the long term, provide enough energy for heating during severe cold spells
 - Dimensioning of pipelines, underground storages, etc.
 - While carrying out the partial conversion of the network to H₂ or CO₂
 - Need for an estimation of the magnitude of severe cold spells in current (and future) climate
 - ightarrow 2, 10, 20, 50-year return levels

Methodology overview

- **1 Data extraction**, handling of missing values, computing of derived variables of main interest
- 2 **Statistical modelling** of the distribution of the variables, fitting of the parameters on the dataset
- 3 Trying different models, checking their quality and **selecting the most adequate** and reliable
- 4 Computing the return levels or periods using the selected model with associated confidence intervals

Dataset of the study

- Current climate: study on the past period **1949-2021** with historical data in France
- 2-meter air temperature measured by ground weather stations from MF's national network

Yearly minimums of smoothed daily temp., Lille

1980

1960

0

-8

-12

Temperature (°C)

2020

2000

- over different periods (3, 7, 14 days, monthly, whole winter) and over all stations
- Risk of extreme cold spells: daily mean temperature smoothed over 3 days for each station
- Missing measurements, relocations: hard to get complete, continuous, homogeneous series

Statistical models

- Statistical modelling to represent distribution of variables:
 - Generalized Extreme Value (GEV) distribution for cold spells (3 to 14 days):
 - Block maxima approach (width = 1 year / 1 or 2 months)
 - ► Peak-Over-Threshold (GPD) approach tested for degree days
 - ► 3 parameters:
 - Shape **ξ**
 - Location $\boldsymbol{\mu}$
 - Scale $\boldsymbol{\sigma}$
 - Gaussian distribution for monthly and winterly cumulated degree days
 - Best-suited for cumulated variables (central limit theorem)
 - ► 2 parameters:
 - Mean μ
 - Variance σ^2

Taking into account the climate tendency

- Previous models will only work for *homogeneous time series*, which is not the case due to climate change caused by human activities: this tendency needs to be taken into account
- Robin and Ribes, 2020: covariate X_T, proxy of the average tendency on the period

 \rightarrow parameters of the distributions vary depending on year / climate state

- GEV / Gaussian distribution:
 - GEV: constant shape ξ
 - Location / mean: linear dependence
 - Scale / variance: linear + exponential link (positivity) $\mu(T) = \mu_0 + X_T * \mu_1$ $\sigma(T) = \exp(\sigma_0 + X_T * \sigma_1)$
- Choosing (arbitrarily) an adequate covariate X_T:
- Ribes et al., 2022: yearly mean temperature over France on the 1850-2100 period using GCMs constrained by regional observations (also used for IPCC AR6)

Covariate X_T: French mean yearly temperature 1949-2021 (GCM + observational constraint) – 7

Selecting the best models

- Validate the relevance of the non-stationary formulation
- Checking which parameters really need to vary with X_T
- Avoiding useless complexity which could deteriorate reliability
- Likelihood ratio test
 - e.g. GEV distribution:
 - Stationary Gumbel ($\xi = 0$, constant μ and σ)
 - Stationary GEV (constant $\xi \neq 0$, μ and σ)
 - ► Non-stationary GEV Loc (constant $\xi \neq 0$ and σ , μ (T))
 - ► Non-stationary GEV Loc+Scale (constant $\xi \neq 0$, $\mu(T)$, $\sigma(T)$)

Likelihood ratio test results for Paris, smoothed daily mean, 1-year blocks (95 % tolerance) Blue = the more complex the better Orange = the simpler the better

- Results (same formulation for all stations and time blocks for homogeneity):
 - ightarrow Non-stationary formulation is necessary

 \rightarrow Only on location / mean (non-stationarity on scale /variance = non-profitable complexity)

- Return levels of cold spells and winterly cumulated degree days follow the same kind of evolution as the covariate:
 - relatively stable until 1970 (high aerosol emissions compensate warming effect)
 - **increasingly steeper from 1980 to present** (as the aerosol emissions decrease)
- Magnitude of severe cold spells decreases over the period (+0.4°C/dec in 1980, +0.6°C/dec in 2020)

Main results

- Similar evolution for the degree days cumulated over the whole winter
- *Month by month* results have *similar* characteristics but show some discrepancies

e.g.: Cumulated degree days decrease slower in December, January and February (7-8% between 1990-2020) than in November / March (10%)

Confidence intervals, uncertainty and limits

- Confidence intervals computed by bootstraping
 - The higher the return level, the larger the confidence interval
 - The width of the intervals remains relatively constant (high return levels, 1-year and winter)
 - Width more variable for smaller return levels and summer months
- Small dataset (73 years): relatively high uncertainty for 50-year return levels
 → confidence intervals are large but need to be exploited
- Month by month results are less reliable (EV theory limits), especially in summer
 → better to consider larger blocks (1-year)
- Some stations opened more recently: smaller dataset, higher uncertainty
 → station by station results *might show geographical patterns that are not reliable*

- Hard to get continuous and homogeneous measured time series: need for a high resolution unbiaised reanalysis to complete missing data, especially on complex terrain
- Extreme event studying requires a large dataset to be reliable: 70 years is short to compute 50-year return levels
- Taking into account the tendency induced by climate change in the time series is crucial (at least on the mean / location parameter)
- Severe cold spells and cold winters are becoming less intense for a same return time, at a faster rate than the mean temperature
- Uncertainty remains high: confidence intervals are essential and results still need to be handled carefully

¢

METEO FRANCE

Thank you for your attention

- GABDA Darmesah, TAWN Jonathan et BROWN Simon, 2019: A step towards efficient inference for trends in UK extreme temperatures through distributional linkage between observations and climate model data. Nat Hazards 98, 1135–1154. (https://doi.org/10.1007/s11069-018-3504-8)
- GROSS Mia H., DONAT Markus G., ALEXANDER Lisa V., et SHERWOOD Steven C., 2020: *Amplified warming of seasonal cold extremes relative to the mean in the Northern Hemisphere extratropics*. Earth Syst. Dynam., 11, 97–111, (https://doi.org/10.5194/esd-11-97-2020)
- GULEV Sergey K. et al., 2021: Changing State of the Climate System. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, pp. 287–422, (doi :10.1017/9781009157896.004, https://www.ipcc.ch/report/ar6/wg1/downloads/report/IPCC_AR6_WGI_Chapter02.pdf)

- RIBES Aurelien, QASMI Said, and GILLETT Nathan P., 2021: Making climate projections conditional on historical observations, Science Advances, 7, eabc0671, publisher: American Association for the Advancement of Science (https://doi.org/10.1126/sciadv.abc0671)
- RIBES Aurelien et. al, 2022: An updated assessment of past and future warming over France based on a regional observational constraint, Earth Syst. Dynam., 13, 1397–1415 (https://doi.org/10.5194/esd-13-1397-2022)
- ROBIN Yoann, 2019: Librairie SDFC v0.6 : https://github.com/yrobink/SDFC
- ROBIN Yoann and RIBES Aurelien, 2020: Nonstationary extreme value analysis for event attribution combining climate models and observations. Adv. Stat. Clim. Meteorol. Oceanogr., 6, 205–221 (https://doi.org/10.5194/ascmo-6-205-2020)
- SCARROTT Carl J. and MACDONALD Anna, 2012: A review of extreme value threshold estimation and uncertainty quantification. Revstat Statistical Journal, 10, 33-60 (https://doi.org/10.57805/revstat.v10i1.110)