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Gas transmission in France

■ Two actors in France: GRTgaz and Teréga

■ Continuity and safety of gas supply in the country:

― Development, maintenance and safety of the network

― Dispatching to the local and national distribution operators

― Storage and LNG terminals interfaces management

― International transit of gas

― Support to renewable and sustainable gases development

Credits: GRTgaz
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Need for climate services

■ Each winter in France, high energy demand for 
heating

― Operational decision making to guarantee 
the balance of the system

― Depends on meteorological conditions
   Need for a climatological reference to 
contextualise each real time situation
→ historical values and return times associated

■ In the long term, provide enough energy for heating during severe cold spells

― Dimensioning of pipelines, underground storages, etc.

― While carrying out the partial conversion of the network to H2 or CO2

   Need for an estimation of the magnitude of severe cold spells in current (and future) climate
→ 2, 10, 20, 50-year return levels

Credits: GRTgaz
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Methodology overview

1 Data extraction, handling of missing values, computing of derived variables of main interest

2 Statistical modelling of the distribution of the variables, fitting of the parameters on the dataset

3 Trying different models, checking their quality and selecting the most adequate and reliable

4 Computing the return levels or periods using the selected model with associated confidence intervals
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Dataset of the study

■ Current climate: study on the past period 1949-2021 with 
historical data in France

■ 2-meter air temperature measured by ground weather stations 
from MF’s national network

■ Climatological reference: heating degree days cumulated 
over different periods (3, 7, 14 days, monthly, whole 
winter) and over all stations

■ Risk of extreme cold spells: daily mean temperature 
smoothed over 3 days for each station

■ Missing measurements, relocations: hard to get 
complete, continuous, homogeneous series

Locations of the 
stations of the study
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Statistical models

■ Statistical modelling to represent distribution of variables:

― Generalized Extreme Value (GEV) distribution for cold 
spells (3 to 14 days):
► Block maxima approach (width = 1 year / 1 or 2 months)
► Peak-Over-Threshold (GPD) approach tested for degree days
► 3 parameters:

— Shape ξ
— Location µ
— Scale σ

― Gaussian distribution for monthly and winterly cumulated 
degree days
► Best-suited for cumulated variables (central limit theorem)
► 2 parameters:

— Mean µ
— Variance σ²
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Taking into account the climate tendency

■ Previous models will only work for homogeneous time series, which is not the case due to climate 
change caused by human activities: this tendency needs to be taken into account

■ Robin and Ribes, 2020: covariate XT, proxy of the average tendency on the period
→ parameters of the distributions vary depending on year / climate state

µ(T )=µ0+XT∗µ1 σ (T )=exp (σ 0+XT∗σ 1)
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Covariate XT: French mean yearly temperature 
1949-2021 (GCM + observational constraint)

■ GEV / Gaussian distribution:

― GEV: constant shape ξ

― Location / mean: linear dependence

― Scale / variance: linear + exponential link (positivity)

■ Choosing (arbitrarily) an adequate covariate XT: 
  Ribes et al., 2022: yearly mean temperature over France 
on the 1850-2100 period using GCMs constrained by 
regional observations (also used for IPCC AR6)
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Selecting the best models

■ Validate the relevance of the non-stationary formulation
■ Checking which parameters really need to vary with XT

■ Avoiding useless complexity which could deteriorate reliability
   Likelihood ratio test

e. g. GEV distribution:
► Stationary Gumbel (ξ = 0, constant µ and σ)
► Stationary GEV (constant ξ ≠ 0, µ and σ)
► Non-stationary GEV Loc (constant ξ ≠ 0 and σ, µ(T))
► Non-stationary GEV Loc+Scale (constant ξ ≠ 0, µ(T), σ(T))

■ Results (same formulation for all stations and time blocks for homogeneity):
→ Non-stationary formulation is necessary
→ Only on location / mean (non-stationarity on scale /variance = non-profitable complexity)

Likelihood ratio test results for Paris, smoothed 
daily mean, 1-year blocks (95 % tolerance)
Blue = the more complex the better
Orange = the simpler the better
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Main results 

■ Return levels of cold spells and winterly cumulated degree days follow the same kind of evolution as 
the covariate:

― relatively stable until 1970 (high aerosol emissions compensate warming effect)

― increasingly steeper from 1980 to present (as the aerosol emissions decrease)

■ Magnitude of severe cold spells decreases over the 
period (+0.4°C/dec in 1980, +0.6°C/dec in 2020)

■ Similar evolution for the degree days cumulated over 
the whole winter

■ Month by month results have similar characteristics 
but show some discrepancies
e. g.: Cumulated degree days decrease slower in 
December, January and February (7-8% between 
1990-2020) than in November / March (10%)

Evolution of the yearly defined 50-year return level of 
smoothed daily mean temperature in Paris

(with 70 and 95% confidence intervals)
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Confidence intervals, uncertainty and limits

■ Confidence intervals computed by bootstraping

― The higher the return level, the larger the confidence interval

― The width of the intervals remains relatively constant (high return levels, 1-year and winter)

― Width more variable for smaller return levels and summer months

■ Small dataset (73 years): relatively high uncertainty for 50-year return levels
→ confidence intervals are large but need to be exploited

■ Month by month results are less reliable (EV theory limits), especially in summer
→ better to consider larger blocks (1-year)

■ Some stations opened more recently: smaller dataset, higher uncertainty
→ station by station results might show geographical patterns that are not reliable
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Take-away messages

■ Hard to get continuous and homogeneous measured time series: need for a high resolution 
unbiaised reanalysis to complete missing data, especially on complex terrain

■ Extreme event studying requires a large dataset to be reliable: 70 years is short to compute 50-year 
return levels

■ Taking into account the tendency induced by climate change in the time series is crucial (at least on 
the mean / location parameter)

■ Severe cold spells and cold winters are becoming less intense for a same return time, at a faster rate 
than the mean temperature

■ Uncertainty remains high: confidence intervals are essential and results still need to be handled 
carefully
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Thank you for your attention
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