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KEY DEVELOPMENT OBJECTIVES

The key points driving this development of the Hydro Inflow Dataset for Power System are the following:

e Have a unified framework to estimate historical and projected inflows for each market node.

e Requiring only minimal input data, ie. the historical production, river discharge data from ECMWF,
power plant location (optional).

e Not requiring power plant network +opo|ogy, measured natural inflows, reservoir levels.

A key hypo’rhesis of the model is that the
production is a good proxy of the
inflows, on a daily basis for RoR and
Pondage, and on a weekly basis for
Reservoir and Pumping.

The model will thus focus on the transfer
function between river discharge and
produci'ion, |ec|ving the inflow estimation as
an aggregatfion in time from the produc’rions.




PROCESS OVERVIEW

The designed process is structured as follows:

e Definition of the "EFAS river discharge — production — inflows” transfer function
o Step I river discharge dimensionality reduction
o Step 2: non-linearity from river discharge latent space to production data
o  Step 3: transfer function quality check and evaluation
o Step 4: resampling and interpretation as inflows
e Back-casting with EFAS and projection with CORDEX river discharge datasets

Power Plants statistical productions (2010-2021)

Historical inflow (1991-2021) based on river discharge data
from European Flood Awareness System (EFAS) | 1991 2021

Projected inflow (2006-2065) built on river discharge derived from
bias-adjusted European climate projections (CORDEX) | 2006 2065

e Handling power plant mis-categorization, missing metadata, and anomalous behaviour
o Frequency ana|ysis of the power plants generation time-series
o  Example: analysis of reservoir PP upstream of RoR PP.



RIVER DISCHARGE LATENT SPACE

The input river discharge data is pre-processed with a PCA, using the geographical bases to gain a
physical insight, and the time-series coefficients as a pre-processed inputs for the downstream model.
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RIVER DISCHARGE LATENT SPACE

The PCA identifies “physical” dynamics in the river discharge data, for example in France:

The first base is
generally associated
with the average
value, and has little
spatial information.

The second base
highlights the
north-south

differences, and the
correlation of the
Loire river with south
dynamics.

The third base shows
a inland-coastal
differences, with the
Rhone river correlated
with the inland
dynamics.




RIVER DISCHARGE LATENT SPACE

If a power plant is geolocated, the PCA is only computed in its proximity.
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River

discharge

PCA keeping leaky ReLU

95% of the
information

Full river discharge in proximity of the power-plant
River discharge latent dynamics

The PCA has a explainable
and regularizing effect,
capturing the physical
dynamics around the PP.

Perceptron layer with

Perceptron hidden layer

The perceptron can represent
both the weakly nonlinear
relation between river
dischorge and produc’rion, and
the strong non|ineori’ry of the
saturation.

Perceptron layer with output clippin

END-TO-END PROCESS

Resampling
in time.

Power plant production
Natural inflows interpretation

Resampling data over a
period T allows to exclude
reservoir dynamics with
dynamics <T and work with
the production » inflows.



MODEL VALIDATION
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A K-Fold cross-validation was chosen despite the
time-series nature of the prob|em since we are
interested in back-casting and re-projecting, and
not s’rric’r|y forecos’ring.

Distributional shift crrors due to generalization to
CORDEX data when projecting are not measurable
since there is no ground truth available, thus care
should be taken when omo|yzing the projection results.
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Inflow (MWh/day)

Inflow (MWh/day)

HYDRO INFLOW RESULTS
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The model generalizes the
seasonal dynomics, o||owing to
estimate inflow for the EFAS
data period of 1991-2021,
starting from data in 2010-2021.
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8000 -

6000

4000 -

2000 -

AUTOMATED TYPE IDENTIFICATION

The model is robust when Run of River PP show “regulated” weekly dynamics, exhibiting
consistency with natural inflows, avoiding to fit the non-natural components of the generation signal.

Still, a data-driven classification method may prove beneficial in preventing such occurrences.

Moreover, mis-classification of the PP behaviour can impact studies that need to quantify
zone-wide dispatching capabilities and generation correlation with demand, as adequacy studies.
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AUTOMATED TYPE IDENTIFICATION

Hydroe|eci‘ric power plants are broadly categorized into 4 types:

Run of River (no storage capabilities)

Pondage (up to 24h of storage)

Reservoir (more than 24h of storage)

Open loop pumping (reservoir with pumping)

Closed loop pumping (pumping with no natural inflow)

We propose an alternative surrogate data-driven classification that could be used:

When handling complex datasets from various sources and the labeling could me missing
To check for mislabeling
For PP in sequence, e.g. a RoR after a Reservoir, behaving as a Reservoir.
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AUTOMATED TYPE IDENTIFICATION

We propose the Fo||owing approach:

e Compute the Amplitude Spectral Density of the hourly generation signal
e Evaluate the peaks prominences at some key periods:

o 1,1/2,1/3 days — periods associated with daily regulation

o 7,35 days — periods associated with weekly regulation
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AUTOMATED TYPE IDENTIFICATION
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These are few
power p|on+s with
behaviours.

While similar observations could
be obtained by |ooking at the
hour-by-hour-by-weekday
aggregation, the ASD provides
useful scalar values that allows
fo sysfemoﬂco”y ono|yze |orge
amount of generation data.
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amplitude spectral density [MWh/h]

amplitude spectral density [MWh/h]

AUTOMATED TYPE IDENTIFICATION
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Upstream Reservoir PP:

This ASD is due to the PP
behaviour, with 6 MW
harmonics on the 1 day period,
and 2 MW on the 1 week one.

Downstream RoR PP:
This ASD is due to the

upstream reservoir behaviour,
since the PP has no modulation

capabilities.
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The end.

Thanks for listening.



Back-up



FOURIER ANALYSIS - POWER SPECTRUM
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FOURIER ANALYSIS - POWER SPECTRUM

Power spectrum
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Asturias PP is classified as RoR, but there is some modulation. Are there
upstream modulations? Kept as RoR or not?
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Fourier analysis results may help the TSO in the definition of the PPs" type (e.g. RoR, Pondage,

Reservoir).
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EFAS (vs) CORDEX

Maps of the difference EFAS - CORDEX in Spain
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EFAS (vs) CORDEX

Autocorrelations of all the valvee of §',ba./n, weighted by their logarithmic mean
2006-2021
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— Larger fractions of exfreme|y autocorrelated pixe|s

— Different behaviour in frequency between EFAS and CORDEX 20




EFAS (vs) CORDEX

Autocorrelations of all the valvee of gpah«, weighted by their logarithmic mean
2006-2021

4 days lag autocorrelation 5 days lag autocorrelation 6 days lag autocorrelation
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— Larger fractions of ex’rreme|y autocorrelated pixe|s

— Different behaviour in frequency between EFAS and CORDEX 21



HISTORICAL RIVER DISCHARGE (EFAS)

Daily and 6-hourly discharge time
series for every grid cell of the river

network.
e 5km grid
e From 1991 to today
e uses LISFLOOD hydrological model
e download by browser or Python API
e gridded data
e delivering as .grib and .netcdf
o free of charge both historic and

forecast

Mean river discharge from 1991 to 2019 for EFAS 4.0

w
(=]
River discharge (m3 s1)

LISFLOOD is a Rainfall-runoff model capable of

simu/oﬁng the /’)ydro/ogico/ processes that occur in

a catchment.

runoff

LISFLOOD

routing +
groundwater)

https://ec-jre.github.io/lisflood-model
/1_1_introduction_LISFLOOD/
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https://ec-jrc.github.io/lisflood-model/1_1_introduction_LISFLOOD/
https://ec-jrc.github.io/lisflood-model/1_1_introduction_LISFLOOD/

CORDEX

Daily discharge time series for
every grid cell of the river network.

5 km grid

From 2006 (or 1971*) to 2100

uses E-HYPEgrid hydrological model
download by browser or Python API
gridded data

delivering as .grib and .netcdf

free of charge both historic and
forecast

*Depending on the model.

Annual mean river discharge for 1971-2000

The Hydrological Predictions for the Environment
(HYPE) is a physically based catchment model
which simulates water flow and substances on their
way from precipitation H’lrough different storage
compartments and fluxes to the sea.

https://climate.cope
rnicus.eu/user-guida
nce
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https://climate.copernicus.eu/user-guidance
https://climate.copernicus.eu/user-guidance
https://climate.copernicus.eu/user-guidance

River discharge CORDEX data are
produced occording to the
Representative Concentration

Pathway (RCP) 4.5 scenario.

In this scenario, the emp|oymen’r of
’rechno|ogies and strategies for
reducing greenhouse gas emissions
would allow to stabilise the rodio’ring
forcing at 45 W/m"2 before the year
2100.

CORDEX

delta Tref

GFDL-CM3 surface temperature change versus year 2000

(adjusted for control drift)

Historical
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