

Energy Pathways to 2050 Evolution in weather-related risks to France's power system

ICEM 2023-06-29

Bénédicte JOURDIER, Laurent DUBUS (RTE)

Copyright RTE – 2021. Ce document est la propriété de RTE. Toute communication, reproduction, publication même partielle est interdite sauf autorisation écrite du Gestionnaire du Réseau de Transport d'Électricité (RTE)

Energy Pathways to 2050

RTE's mission to enlighten the public and decision makers & request of the French government in 2019

Scoping of the study, characterisation of the scenarios

9 working groups 40 meetings held with experts from >100 energy sector firms, NGOs, institutes, regulatory and government agencies ...

2021 S1: public consultation ≈ 4,000 answers

Simulations, analyses

Over 8,000 simulations and 500,000 hours CPU

Publication of results

- Key results (Oct. 2021)
- In-depth analyses (Feb.
 2022) ≈ 1,000 pages

Energy Pathways to 2050 | Achieve carbon neutrality in 2050

To achieve **carbon neutrality in 2050**, total energy consumption would decrease (− 40%) but demand for **electricity** would increase (+ 35% in baseline trajectory) as fossil fuels are replaced (in transport, industry...) → Need to produce more decarbonised electricity (how?) while replacing the current nuclear power plants.

Energy Pathways to 2050 | Six generation mix scenarios

Method: input data to the simulations

.

What changes between now and 2050?

Energy Pathways to 2050 - Evolution in weather-related risks to France's power system | 2023-06-29 | Jourdier B.

Simulations

Rie

One simulation for each demand × generation mix × ... × horizon (2030, 2040, 2050, 2060).

By construction, they all enable **carbon neutrality** in 2050 and all have a similar level of **security of supply** as today (expected energy not served of 10 GWh/year).

Energy Pathways to 2050 - Evolution in weather-related risks to France's power system | 2023-06-29 | Jourdier B.

Climate simulations

by Météo-France using ARPEGE-Climate model.

Three datasets representing **3 different climates** Each dataset = **200 years**

- Climate around year 2000

 (and a 2025 variant for temperature)
 - baseline for past/current climates
- Climate around year 2050 (scenario RCP4.5)
 - reference for future climate
- Climate around year 2050 (scenario RCP8.5)
 - used for stress-case scenarios

Simulations | Demand

- Climate change impacts
 - \succ Less cold days \rightarrow less demand for electric heating
 - ➢ More and hotter days → more demand for air conditioning

Structural changes

- Reduced consumption through efficiency and possibly sufficiency
- Increased consumption from fossil fuel substitution (transport, industry, hydrogen)

Simulations | Supply

Rie

Climate change impacts

- Small impacts on wind and solar generation in FR
- Changes in hydropower's seasonality.
- Reduced availability and efficiency of thermal plants (low streamflows or high river temperatures)
- Structural changes

Generation mix

Wind & solar share: $12 \% \rightarrow 40$ to 90 % in 2050

Interconnections

Import capacity 13 GW \rightarrow around 40 GW in 2050

Principal findings

......

Analysis of the outputs from a meteorological perspective

Weather-related risks shifting to cold « wind droughts »

Energy Pathways to 2050 - Evolution in weather-related risks to France's power system | 2023-06-29 | Jourdier B.

 \succ

Weather-related risks shifting to cold « wind droughts »

Example of a day with scarcity in France in 2050 (whatever the generation mix).

Low temperatures & low winds => high residual loads

not only in France but **over most of Europe**

Weather-related risks shifting to cold « wind droughts »

Average of all days with scarcity risk

compared to

Rie

average over the whole extended winter (NDJF)

Under those assumptions and scenarios:

Tension situations for France's power system would evolve from very cold periods to cold wind droughts covering most of Europe (between November and February)

In summer:

- No risk terms of scarcity
 - × Reduced availability of nuclear power plants
 - (because of low streamflows and high river temperatures)
 - ✓ Very large solar generation (≈100-200 GW of installed PV) and enough flexibility
- ➢ But there could be risks to the system's infrastructure and operation in case of extreme heat and wild fires. → Perspective work

Contact: benedicte.jourdier@rte-france.com

Key findings (in English): <u>https://www.rte-france.com/en/home</u>

Whole study (in French): <u>https://www.rte-france.com/analyses-</u> tendances-et-prospectives/bilan-previsionnel-2050-futurs-energetiques

Copyright RTE – 2021. Ce document est la propriété de RTE. Toute communication, reproduction, publication même partielle est interdite sauf autorisation écrite du Gestionnaire du Réseau de Transport d'Électricité (RTE)

Generation mix scenarios

