

0

icem

2023

#icem2023Italy

27 - 29 JUNE 2023 PADOVA, ITALY

Assessing the gains of a photovoltaic collective selfconsumption from residential, industrial and tertiary buildings

Sylvain Cros Jordi Badosa

e4c.ip-paris.fr

E4C INTERDISCIPLINARY Energy4Climate living lab in Palaiseau

EAC INTERDISCIPLINARY SIRTA Atmospheric observatory

150+ meteorological instruments
20 years of observations
3 Gb observations/day
International observation network member (BSRN, AERONET, ACTRIS ...)

Commercial PV module testbench (2015-)
Perovskite cells platform test
2 trackers PV 2-axes
AgriPV (72 modules, 40 kWc, 1-axis tracker, salads are currently growing)

E4C INTERDISCIPLINARY PV individual self-consumption (ISC)

self-consumption

grid electricity

surplus

- •Avoid voltage rise during peaks PV production periods
- •Helps to reach higher shares of installed PV in the electric mix
- •Offers a cheaper, clean and local electricity to users

However, PV production profile does not fulfill single user consumption habit
Surplus can be valued through :

- battery (inducing energy loss and extra-costs)
- Network selling (less attractive price than self-consumed energy)

EAC INTERCUSCIPLINARY PV collective self-consumption (CSC)

- + self-consumption
- grid electricity
- surplus

- •Legally defined in France since 2018
- •Enable to share PV production one or several plants to users located within a 2 km diameter circle (up to 10 km in rural areas)
- •Key distributions of PV power production among users are defined by a community representative (PMO)
- •Fair billing is computed and certified by ENEDIS (french DSO)
- •Main metrics to assess CSC performance:
 - Self-consumption rate
 - Self-sufficient rate

Objective : assessing gain of a simulated CSC at Polytechnique

Drahi X-Novation Center Electric smart-building Tertiary

Magnan restaurant Polytechnique main canteen Industrial

103 residential building Electric smart-building Residential

- •Drahi-X PV farm is an experimental PV power plant with :
 - 53 panels
 - 17 kWp in capacity
 - 6 different PV technologies
 - 2 different inclinations
 - 2 reflectors (in front of some panels)
- •Continue measurements available from **October 2020**)
- •1/3 of the building is in actual self-consumption

- •We simulated 3 fictional PV farms by scaling Drahi-X PV production according to building average consumption
- •We assumed the 3 buildings receive at each instant an equal GHI amount by m²
- PV measurements have been cleaned from incidental gaps and known biases (e.g. tree shadowing) using GHI observed by at SIRTA

E4C INTERDISCIPLINARY Simula	ated CSC featu	res for entire year 2022		
	x3	x10	x15	Total
PV simulated capacity (kW _p)	51	170	255	476
PV production (MWh)	244	813	1220	2277
Building consumption (MWh)	883	1999	694	3576
	Drahi-X Novation Center	Polytechnique	B103 student residence	

E4C INTERDISCIPLINARY Performance computation methodology

- The goal is to compute for each considered time-step :
 - The self-consumption rate (which part of total available PV production has been actually consumed ?)
 - The self-production rate (which part of total consumed electricity comes from the Sun ?)
- 4 scenarios are considered
 - Individual self-consumption (no PV production shared between buildings)
 - **CSC with static repartition keys** (total PV production attributed with fixed rate, deduces from consumption share of 2022)
 - CSC with dynamic keys monthly revised using monthly consumption share (standard time step define by ENEDIS, French DSO for billing in CSC)
 - CSC with dynamic half-hourly keys (maximum authorized by ENEDIS).

E4C CENTER Surplus and PV consumption for 2022

Total surplus (MWh)Total consumed PV

Surplus PV reduction from ISC to CSC 30min keys : 254 MWh (19.2%)
254 MWh that the community will not buy to the grid thanks to CSC !

EAC CENTER Self-consumption and self-sufficient rates for 2022

EAC INTEREDISCIPLINARY Seasonal self-consumption and self-sufficient rates

Spring

Autumn

E4C LIFERDISCIPLINARY A day in summer – 7th July 2022

E4C INTERDISCIPLINARY Individual self-consumption 7th July 2022

E4C LINERPISCIPLINARY CSC monthly keys – 7th July 2022

E4C LEAC CSC 30-min. keys – 7th July 2022

E4C INTERDISCIPLINARY A day in spring 4th April 2022

E4C INTERDISCIPLINARY Individual self-consumption - 4th April 2022

E4C INTERDISCIPLINARY CSC monthly keys - 4th April 2022

 \otimes

E4C CSC 30-min. keys - 4th April 2022

 $\langle \mathfrak{D} \rangle$

E4C INTERDISCIPLINARY A day in autumn - 4th October 2022

E4C INTERDISCIPLINARY CSC static keys - 4th October 2022

LEAC LINER CSC monthly keys - 4th October 2022

E4C INTERDISCIPLINARY CSC 30-min. keys - 4th October 2022

EAC LINTERDISCIPLINARY CSC static keys – 24th January 2022

E4C INTERDISCIPLINARY CSC monthly keys – 24th January 2022

 \otimes

E4C CSC 30-min. keys – 24th January 2022

 \otimes

- By simulating an **energy community** we assessed the gains of collective self-consumption compared to individual self-consumption
- PV surplus reduction of ~20 % without any costly or complex technological solution, only a short circuit energy distribution management, less dependent on market fluctuations
- Further solutions will be explored to reduce surplus : accurate PV production and consumption forecast can help consumption flexibility, then increase self-consumption rate.
- Interested by this topic ? Want to share energy community data ? please contact us!

sylvain.cros@polytechnique.edu jordi.badosa@polytechnique.edu

www.lmd.ipsl.fr

https://www.e4c.ip-paris.fr

