

A tailored solar power forecasting system for optimized grid management in Tahiti, French Polynesia

Damien Raynaud, Pierre Besson, Elena Escudero-Ramos, Guillaume Tremoy

International Conference Energy & Meteorology, Padova 27-29 June, 2023

© Steadysun S.A.S 2023

About Steadysun Some key information

Founded in **2013 25** employees **6** PhD level Turnover : ~**+25%**/year **14,000** sites covered

Solar & Wind Technologies, Meteorology, Image Processing, Data Science, Al IoT & Web Services.

steady<mark>sun</mark>

Spin-off from

About Steadysun Our three main forecasting products

"day-ahead" Forecasting

6 hours to 15 days

Based on meteorological models

"intraday" Forecasting

30 min to 6 hours

Based on satellite imagery

"very short-term" Forecasting

5 to 30 min Use of a sky imager installed on site

The Tahitian power grid

148 MW 2 thermal plants (8 diesel generators)

48 MW 18 hydropower plants

15 MW / 5 MWh Virtual Synchronous Generator

44 MWp >3200 rooftop PV installations

30 MWp 4 PV+storage plants (2024)

steady<mark>sun</mark>

520GWh total electricity production (2021)

(Source EDT Engie)

The Tahitian power grid An increasing share of PV power

The PV installed capacity is increasing every year

Obj. 2020 : 50% renewable power **Obj. 2030 :** 75% renewable power

Locations and sizes of the >3200 pv power plants in Tahiti

• More than 3200 real PV plants, mostly on-roof

- Distributed all around the island, mainly on the coast
- More installed capacity in the north-western coast

The Tahitian power grid Forecasting needs

Maximize the use of RE while ensuring power network stability

How to ensure demand/supply balancing and scheduling of the different generation units (hydropower, gensets)?

12 hours ahead total PV production probabilistic forecasts, updated every 1 hour

How to limit the use of spinning reserves (fuel saving, maintenance costs)?

→ 10-30 minutes ahead total PV production probabilistic forecasts, updated every 1 min

How to integrate PV+storage production (safe and stable operations)?

→ 12/8/5 hours ahead PV+storage production forecasts, updated every 6 hours (trapezoidal power profile provided by plant operators)

Typical daily PV production profile

The Tahitian climate Large scale weather patterns

Tahiti has a tropical climate with an wet season (Dec to Mar) and a dry season (Jun to Oct)

(Source Infoclimat) Two convergence zones drive most disturbances:

⇒ Inter-Tropical Convergence Zone
⇒ South Pacific Convergence Zone

Some Subtropical disturbances coming from the South can also affect the island

The Tahitian climate Large scale weather patterns

Tahiti has a tropical climate with an wet season (Dec to Mar) and a dry season (Jun to Oct)

(Source Infoclimat) **Two convergence zones drive most disturbances:**

⇒ Inter-Tropical Convergence Zone
⇒ South Pacific Convergence Zone

Some Subtropical disturbances coming from the South can also affect the island

Interaction with the topography

The Tahitian climate Large scale weather patterns

Tahiti has a tropical climate with an wet season (Dec to Mar) and a dry season (Jun to Oct)

(Source Infoclimat) Two convergence zones drive most disturbances:

⇒ Inter-Tropical Convergence Zone
⇒ South Pacific Convergence Zone

Some Subtropical disturbances coming from the South can also affect the island

Interaction with the topography

steady<mark>su</mark>ŋ

PV forecasting in Tahiti Modelling the PV park

From >3200 real PV plants to 1 aggregate

Actual distributed PV (>3200 real plants, 44 MWp)

Modeled distributed PV (38 monitored pv plants, 16 MWp)

Modeled distributed PV (35 virtual plants, 28 MWp)

Modeled total PV (1 aggregate, 44 MWp)

H+12 forecasts The WRF regional model

Model setup with 4 nested domains

WRF simulations

WRF is a regional model that can be implemented and calibrated anywhere in the world

Examples of WRF simulations versus satellite images

H+12 forecasts The WRF regional model

Model setup with 4 nested domains

WRF simulations

WRF is a regional model that can be implemented and calibrated anywhere in the world

H+12 forecasts SteadyMet: a multi-model / multi-run mix

Date: 2021-03-02

1						IFS- HRES
	Model	Domain	Provider	Spatial Resolution	Temporal Resolution	Clear Sky prod Measurements Forecast
	GFS	Global	NOAA	25km	3h	
	IFS-HRES	Global	ECMWF	12km	3h	
	AROME	France	Météo France	2.5km	٦h	
	WRF	150x150km	Steadysun	1km	10 min	
00h00 04h00 12h00 16c0 20:00 00:00						
		202	WDE			

Clear Sky prod Measurements

Forecast

16:00 20:00

GFS

m

์ รteady<mark>su</mark>ก

H+12 forecasts Developing a spatial confidence indicator

Sometimes, ensemble, multi-model and multi-run forecasting is not sufficient to estimate the uncertainty

H+12 forecasts Developing a spatial confidence indicator

24 PV power forecasts around the island

As numerical weather models have difficulties forecasting the location of thunderstorms we create an ensemble forecasts from 24 virtuals plants around the island.

Comparison between the local forecast (red line) with the surrounding ones (grey lines)

H+12 forecasts Developing a spatial confidence indicator

The confidence indicator is provided at 4 am for both morning and afternoon with an update at 10 am.

The indicator can be:

Good confidence in the forecast

- Risk of much higher PV production than R+ forecasted
- R-
- Risk of much lower PV production than forecasted
- R? Large uncertainty

2020-10-15

steady<mark>sun</mark>

18:00

12:00 Heure

06:00

์ รteady<mark>su</mark>ก

H+12 forecasts Live correction

Correcting the forecast with power measurements reduces some of the errors made by the forecast in the first few time steps (H+4 max).

- Forecast-measurement comparison over the previous hour
- Weighting (more weight given to recent deviations than to those at H-1)
- Progressive return to the raw forecast from H+0 to H+4

H+12 forecasts Full information visualisation

There is still room for improvement: Data assimilation in WRF, ensemble forecasting with differents forcings/parameterizations, Al...

THANK YOU

More information on the tahitian power grid and all of our forecasting services delivered there for >6 years can be found on the following poster:

steadysun

Solar energy assessment and forecasting in insular regions: the Tahiti case study

Guillaume Tremoy