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• 8 Wind Farms located in Southern Italy

• 3 days ahead hourly Forecast used in the Day-

Ahead Energy Market 

• Forecast is made using multiple machine learning 

models (like Random Forest and Gradient Boosting 

Machine)

• Forecast must be issued by 09:00 AM UTC
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• The operational chain Start around 00:00 UTC

• 2 Global Models and 2 Local Area Models

• The only step of the operational chain that can be 

modified is the training of machine learning models
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Machine Learning training dataset

7 Years of Training data (about 36,000 records 

for every variable).

• Time of day

• Temperature at 2m

• Sea-level pressure

• Wind direction

• Wind Intesity

• Solar zenith angle

Gradient Boosting MachineRandom Forest

Does not run in parallelRuns in parallel

Significantly influenced by 

hyperparameters

Not significantly influenced by 

hyperparameters
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Hyperparameters search

Training

Forecasting

10 Intel(R) Xeon(R) Gold 5218R CPU @ 2.10GHz.
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• High variability

• The wind speed exhibits seasonality patterns

• More wind power production during winter period

Winter

Summer
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• Searching for 30-day periods in the past, where the 

predicted wind Weibull distributions exhibit similarity 

to the distributions observed in the last 30 days.

• The similarity between distributions is determined by 

calculating the Euclidean distance between the scale 

and shape parameters of the distributions
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Wind farm 2Wind farm 1

rBIASrRMSErMAERrBIASrRMSErMAER

0.93%9.66%6.26%0.8981.50%15.46%11.09%0.842
7 years

0.83%9.99%6.40%0.8901.13%16.13%11.56%0.825
13 months

0.75%9.89%6.32%0.8921.13%15.76%11.34%0.834
18 months
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• BIAS is lower for shorter dataset

• It is possible to create an ensemble of elementary 

predictions by leveraging different meteorological 

models and post-processing techniques.

• These predictions can then be fed into an optimizer to 

generate a single prediction (using a Quantile Random 

Forest) along with an estimation of its reliability.
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Conclusion

• The time constraints imposed by the day-ahead market need to be considered in the 

operational mode

• The machine learning models makes use of a carefully selected training dataset that 

includes a limited range of months (13 or 18), from 2017 onwards

• The selection of this training dataset offers several advantages:

• Substantial reduction in computation time while maintaining performance

• Enables daily hyperparameter tuning for enhanced optimization

• Having lower biases facilitates the generation of an optimizer
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