Faculty of Engineering School of Photovoltaic and Renewable Energy Engineering

Global photovoltaic potential in climate change scenarios: role of aerosols and associated costs

7th International Conference in Energy & Meteorology, Padova, Italy June 2023

Alejandra Isaza, Merlinde Kay, Jason Evans and Stephen Bremner

Changes are occurring throughout the climate system

Six key indicators of ongoing changes since 1850 through 2018. Each stripe indicates the global annual mean anomaly for a single year, relative to a multi-year baseline (except for CO2 concentration and glacier mass loss, which are absolute values). **Source: IPCC (2021).**

1

Uptake of renewable energy technologies is spreading rapidly worldwide, and future expansion is expected.

Renewable sources are modulated by climate Climate change can affect future production

Main objective

Quantify the impacts of different climate change scenarios in the PV energy production worldwide, focusing on the role of **atmospheric aerosols**

Role of aerosols in solar energy generation:

- Aerosols direct/indirect radiative effects: radiation scattering and absorption/ modification of cloud properties
- Soiling: accumulation in PV panels

Renewable sources are modulated by climate
Climate change can affect future production

Long-term climate projections from CMIP6:

11-members ensemble:

Experiments:

Model	Institute, Country	Resolution (°lat x °lon)
ACCESS-CM2	CSIRO-BOM, Australia	1.25 x 1.875
AWI-ESM-1-1-LR	AWI, Germany	1.865 x 1.875
BCC-CSM2-MR	BCC, China	1.0 x 1.0
CMCC-CM2-SR5	CMCC, Italy	0.942 x 1.25
CMCC-ESM2	CMCC, Italy	0.942 x 1.25
EC-Earth3	EC-Earth-Consortium, Europe	0.72 x 0.72
MIROC-ES2L	MIROC, Japan	2.8 x 2.8
MIROC6	MIROC, Japan	1.4 x 1.4
MPI-ESM1-2-HR	MPI-M, Germany	0.935 x 0.938
MPI-ESM1-2-LR	MPI-M, Germany	1.865 x 1.875
MRI-ESM2-0	MRI, Japan	1.121 x 1.125

Statistical significance of the ensemble-mean calculated following Tebaldi et al. (2011)

Experiment	Brief description	
Historical	Simulation of the recent past (1850 to 2014) with all climate forcings: volcanic, solar, and anthropogenic forcings.	
SSP126	Radiative forcing of 2.6 W/m ² by the end of 2100 following a "Green growth" path - Low GHG emissions and strong air pollution controls	
SSP245	Radiative forcing of 4.5 W/m ² and a "Middle of the road" path. - Intermediate GHG emissions and air pollution controls	
SSP370	Radiative forcing of 7.0 W/m ² and a "Regional rivalry" path - <u>High GHG emissions and weak air pollution</u> <u>controls</u>	
SSP585	Radiative forcing of 8.5 W/m ² by the end of 2100 and a "Fossil-fueled Development" path - <u>Very high GHG emissions and strong air pollution</u> controls	

PV power-conversion model

γ mono-Si = - 0.47 %/C

Future climate projections:

Projected changes in daytime ambient temperature (ensemble-mean)

Future climate projections: mean changes in the near future*

Significant agreement: color and stippling; Insignificant change: color without stippling; Significant disagreement: shown in white

7

Future changes in PV power potential:

Regional analysis in East Asia:

The strong regional and inter-annual variability in the future solar resources is not only modulated by **changes in cloud cover** but by **aerosols** as well

This is the region with the highest number of future solar farms

Levelized cost of energy considering a changing climate:

 $LCOE = \frac{Lifecycle cost (\$)}{Lifetime energy production (kWh)}$

 $LCOE = \frac{\sum_{t=0}^{n} (I_t + O_t + M_t + F_t) / (1+r)^t}{\sum_{t=0}^{n} E_t / (1+r)^t}$

- Economic life: 30 years
- Capital costs 2021: 857 \$/kW
- Operation and maintenance costs: 14.1 \$/kW
- Discount rate: 7.5%*

Climate-change associated costs in one-year operation of future solar farms:

Final remarks:

- Worldwide PV potential is **resilient to climate change**, but economic impacts could still be significant in future largescale solar farms.
- Increases in PV power output expected in Europe, E.N.America, E.S.America and N.W.Asia, while reductions dominate in the rest of the world.
- **Positive feedback:** In a low-emission future scenario, that focuses on renewables and energy efficiency, the future PV impacts are the lowest
- Aerosols highly impact PV energy in **east-Asia**, region with most upcoming solar plants
- SSP370 is the less favorable climate scenario for future PV energy. Cost savings in SSP126 compared to SSP370 could reach **12.4 billion US\$ in one year**
- Improving **thermal management** in market-dominant mono-Si solar cells augment their resilience to climate change. The costs differences between mono-Si and thin-film are around 2 billion US\$ in all the scenarios.

Further research: High-resolution simulations with WRF-Solar to study the role of aerosols in PV production

Thank you for your attention Any questions?

E: a.isaza@unsw.edu.au

"Maximizing Photovoltaic Potential and Minimizing Costs in a Future Warmer Climate: The Role of Atmospheric Aerosols and Greenhouse Gas Emissions" is under revision in Renewable Energy journal

Pre-print is available:

