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Changes are occurring throughout the climate system
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Six key indicators of ongoing changes since 1850 through 2018. Each stripe indicates the global annual mean anomaly for
a single year, relative to a multi-year baseline (except for CO2 concentration and glacier mass loss, which are
absolute values). Source: IPCC (2021).

1 IPCC, 2021. Climate Change 2021: The Physical Science Basis. Working Group | Contribution to the IPCC Sixth Assessment Report.




Uptake of renewable energy technologies is spreading
rapidly worldwide, and future expansion is expected.

Worldwide electricity generation
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Renewable sources are
modulated by climate
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IRENA (2022), Renewable energy statistics 2022, International Renewable Energy Agency (IRENA), Abu Dhabi

Climate change can affect
future production




Main objective

Quantify the impacts of different climate change
scenarios in the PV energy production worldwide,
focusing on the role of atmospheric aerosols

Role of aerosols in solar energy generation:

» Aerosols direct/indirect radiative effects: radiation scattering
and absorption/ modification of cloud properties

» Soiling: accumulation in PV panels

Renewable sources are s Climate change can affect
modulated by climate future production
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Long-term climate projections from CMIPG6:

Resolution (°lat x

Experiment

Experiments:

Brief description

Model Institute, Country lon)

ACCESS-CM2 CSIRO-BOM, Australia 1.25x 1.875
AWI-ESM-1-1-LR AWI, Germany 1.865x 1.875

BCC-CSM2-MR BCC, China 1.0x1.0
CMCC-CM2-SR5 CMCC, ltaly 0.942 x 1.25
CMCC-ESM2 CMCC, ltaly 0.942 x 1.25

EC-Earth3 EC-Earth-Consortium, 0.72%0.72
Europe

MIROC-ES2L MIROC, Japan 2.8x2.8

MIROCG6 MIROC, Japan 1.4x1.4
MPI-ESM1-2-HR MPI-M, Germany 0.935x 0.938
MPI-ESM1-2-LR MPI-M, Germany 1.865x 1.875
MRI-ESM2-0 MRI, Japan 1.121x1.125

Statistical significance of the ensemble-mean calculated following

Tebaldi et al. (2011)

Historical

SSP126

SSP245

SSP370

SSP585

Simulation of the recent past (1850 to 2014) with all
climate forcings: volcanic, solar, and anthropogenic
forcings.

Radiative forcing of 2.6 W/m2 by the end of 2100
following a “Green growth” path

- Low GHG emissions and strong air pollution controls
Radiative forcing of 4.5 W/m? and a “Middle of the road”
path.

- Intermediate GHG emissions and air pollution controls
Radiative forcing of 7.0 W/m? and a “Regional rivalry”
path

- High GHG emissions and weak air pollution
controls

Radiative forcing of 8.5 W/m? by the end of 2100 and a
“Fossil-fueled Development” path

- Very high GHG emissions and strong air _pollution
controls
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PV power-conversion model Python-PVLIB

(Holmgren et al., 2018)

System characteristics - .
y Modelling intermediates:

Solar position: NREL (Reda and Andreas, 2004), Airmass
(Kasten, 1965) and extraterrestrial radiation (Spencer, 1971)

Location (latitude, longitude, altitude,
pressure and timezone) and
orientation (tilt and azimuth)

: - Irradiance components Plane of array irradiances Beam direct, sky-
Global horizontal irradiance

(GHI) DNI: DISC model (Maxwell,1987) diffuse: Isotropic model (Hottel and Whillier,

and DHI 1955 and ground-reflected: albedo 0.2

Effective irradiance

IAM: ASHRAE transmission model
(Souka and Safwat, 1966)

Ambient temperature and wind Cell temperature
speed SAPM model (King et al., 2004)

1,
PV module parameters DC Power Py, = iPch(l + Y(Teett = Tref))

o 1000
Temperature coefficients NREL - PVWATTS
Y : Temperature coefficient of power

y thin-film =-0.20 %/C
Y mono-Si =-0.47 %/C

; # UNsw



Future climate projections:
Projected changes in daytime ambient temperature (ensemble-mean)

Near future (2030-2060) End of century (2070 -2100)
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Future climate projections: mean changes in the near future*

SSP126

SSP245

SSP370

SSP585

GHI [W/m?] AOD Cloud cover [%]

Significant agreement: color and stippling; Insignificant change: color without stippling; Significant
disagreement: shown in white
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Future changes in PV power potential:

Near future

Thin-film

-

Power [%]

SSP370 SSP245 SSP126

SSP585

End of century
mono-Si Thin-film

- -

Power [%]




Regional analysis in East Asia:

GHI AOD Cloud cover
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This is the region with the highest
number of future solar farms
=
*Plants >=20MW in “construction,” “pre-construction” or “announced” status in the Global Energy Monitor’s Global Solar Power Tracker project ¥ UNSW

(https://globalenergymonitor.org/projects/global-solar-power-tracker/) updated in January 2023.
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https://globalenergymonitor.org/projects/global-solar-power-tracker/tracker-map/

Levelized cost of energy considering a changing climate:

-

Lifecycle cost ($) .
LCOE = —— - Parameters for utility-scale PV systems™:
Lifetime energy production (kWh) . Economic life: 30 years
. Capital costs 2021: 857 $/kW
Yo (I + O, + M, + F.)/(1 + 1)t »  Operation and maintenance costs: 14.1 $/kW
LCOE ==& ol : : W/ ) . Discount rate: 7.5%*

Y=o Be/(1 + 1)t

SSP245

SSP585

mono-Si

|
N

o
LCOE differences [$/MWh]

Thin-film

=
10 * IRENA, 2022. Renewable Power Generation Costs in 2021, International Renewable Energy Agency. UNSW
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Climate-change associated costs in one-year operation of future solar farms:

SSP585 Near future for mono-Si
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Differences in LCOE (Near future vs Historical)[$/MWh]

Guangdong Shaoguan Solar Farm, China (5GW)
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Powell Creek Solar Farm, Australia (20GW)
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Final remarks:

Worldwide PV potential is resilient to climate change, but economic impacts could still be significant in future large-
scale solar farms.

Increases in PV power output expected in Europe, E.N.America, E.S.America and N.W.Asia, while reductions
dominate in the rest of the world.

Positive feedback: In a low-emission future scenario, that focuses on renewables and energy efficiency, the future PV
impacts are the lowest

Aerosols highly impact PV energy in east-Asia, region with most upcoming solar plants

SSP370 is the less favorable climate scenario for future PV energy. Cost savings in SSP126 compared to SSP370 could
reach 12.4 billion US$ in one year

Improving thermal management in market-dominant mono-Si solar cells augment their resilience to climate change. The
costs differences between mono-Si and thin-film are around 2 billion US$ in all the scenarios.

UNSW



Further research: High-resolution simulations with WRF-Solar to study
the role of aerosols in PV production

Thank you for your attention
Any questions?

E: a.isaza@unsw.edu.au

“Maximizing Photovoltaic Potential and Minimizing Costs in a Future Warmer Climate: The Role of Atmospheric
Aerosols and Greenhouse Gas Emissions” is under revision in Renewable Energy journal

Pre-print is available:
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