

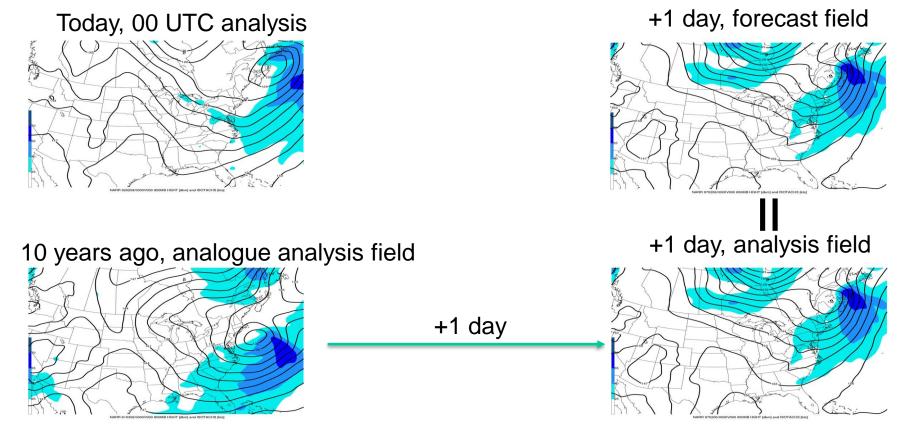
Recent Developments of Machine Learning for Weather Forecasting

Stefano Alessandrini

¹National Center for Atmospheric Research, Boulder, CO, USA

Common "analog" approach

Looking for similar past situations and following the past correspondent evolution



But: The probability of finding good analogs is very small, unless one is satisfied with analogy over small areas or in just 2 or 3 degrees of freedom (Huug van den Dool, 1994)

Recent developments based on Al

• A machine-learning (ML)-based weather simulator called "GraphCast" developed to be used as an operational medium-range weather forecasting system.

• GraphCast is an autoregressive model that utilizes graph neural networks and a highresolution multi-scale mesh representation.

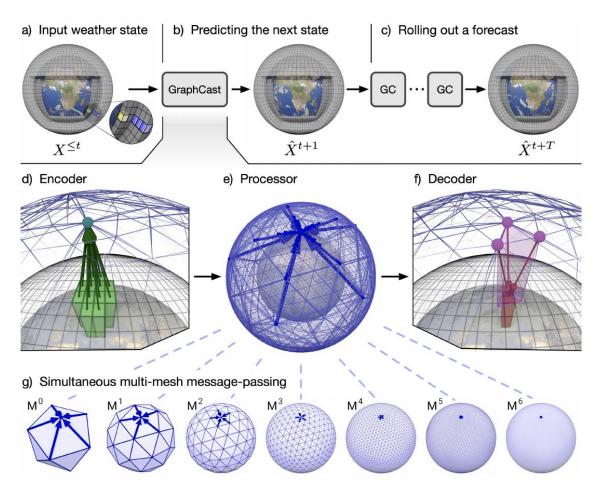
• It was trained on historical weather data from the European Centre for Medium-Range Weather Forecasts (ECMWF) ERA5 reanalysis archive.

• GraphCast can generate 10-day forecasts, with 6-hour intervals, for five surface variables and six atmospheric variables at 37 vertical pressure levels. The forecasts are produced on a 0.25° latitude-longitude grid, equivalent to approximately 25x25 kilometer resolution at the equator.

$$\hat{X}^{t+1} = \operatorname{GraphCast}(X^t, X^{t-1})$$

From: Lam et al., 2022. GraphCast: Learning skillful medium-range global weather forecasting. *arXiv preprint arXiv:2212.12794*.

Recent developments based on AI (GraphCast)



(a) The input weather state(s) are defined on a high-resolution latitude-longitude pressure-levels grid.

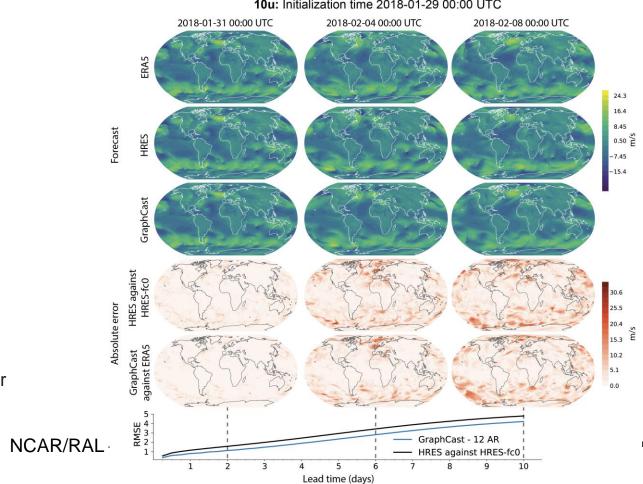
(b) GraphCast predicts the next state of the weather as the latitudelongitude-pressure-levels grid.

(c) A forecast is made by iteratively applying GraphCast to each previous predicted state, to produce a sequence of states which represent the weather as successive lead times.

From: Lam et al., 2022. GraphCast: Learning skillful medium-range global weather forecasting. *arXiv preprint arXiv:2212.12794*.

Recent developments based on Al

- The evaluation of GraphCast claims superior accuracy compared to ECMWF's deterministic operational forecasting system (HRES) on 90% of the 2760 variable and lead time combinations tested
- •GraphCast can generate a 10-day forecast (35 gigabytes of data) in under 60 seconds using Cloud TPU v4 hardware.



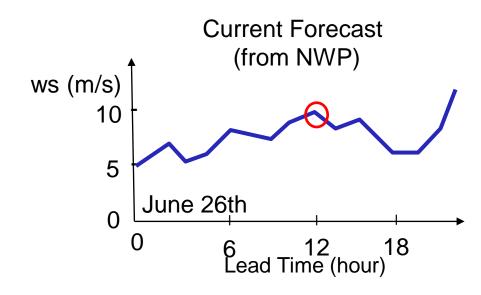
From: Lam et al., 2022. GraphCast: Learning skillful medium-range global weather forecasting. *arXiv preprint arXiv:2212.12794*.

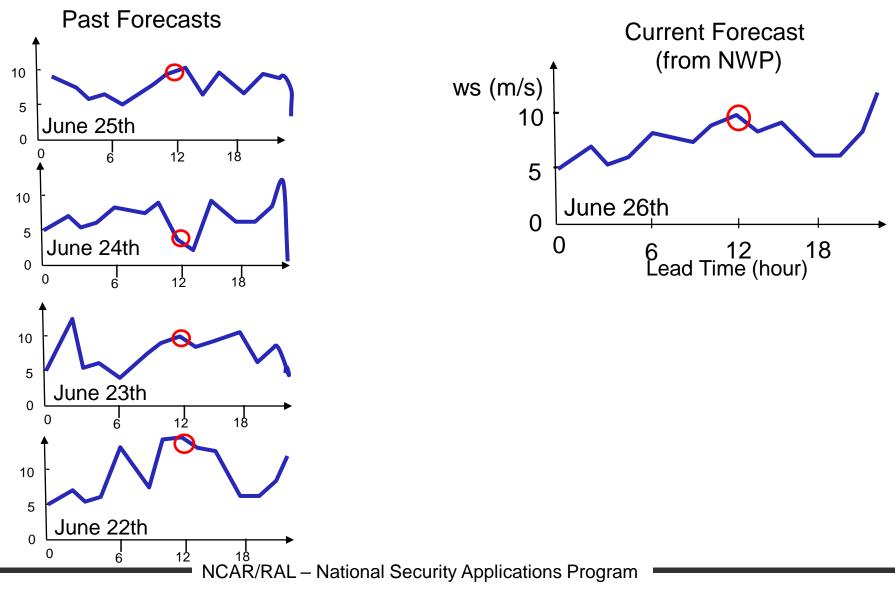
ICEM 2023

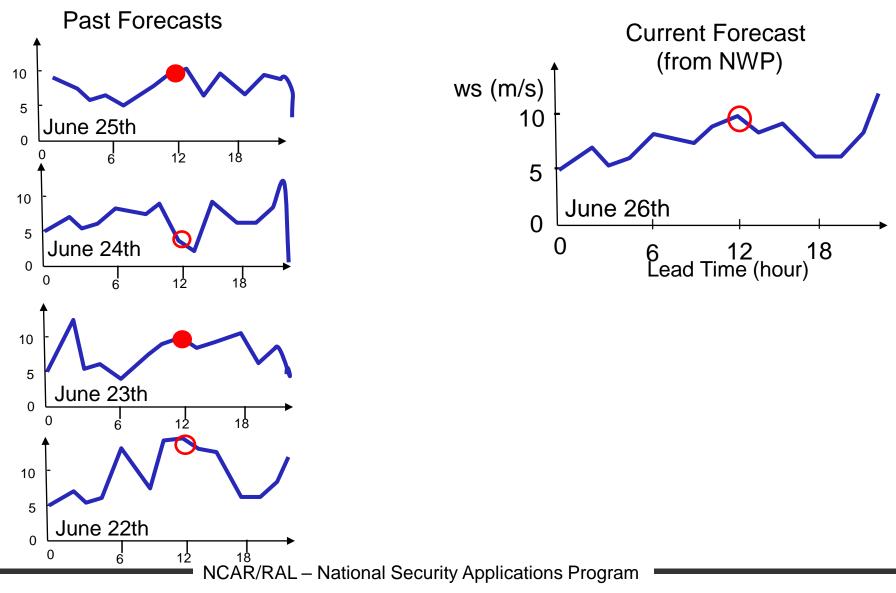
Some thoughts

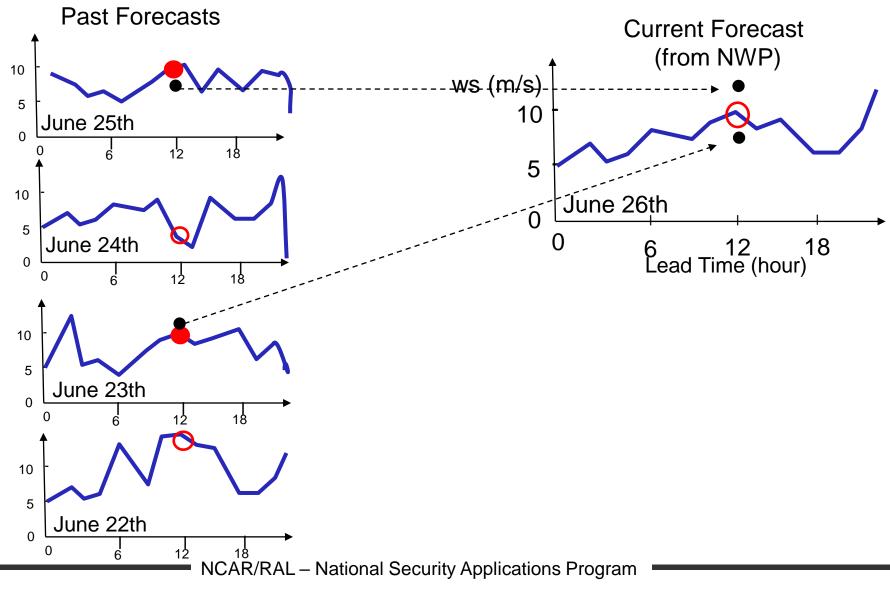
- Is this the beginning of the end on numerical weather prediction (NWP) models?
- GraphCast is still based on on reanalysis model (ERA5) which are based on NWP models to generate the background state
- What about increasing the spatial resolution?
- GraphCast would need a reanalysis model with a higher spatial resolution to increase its own resolution

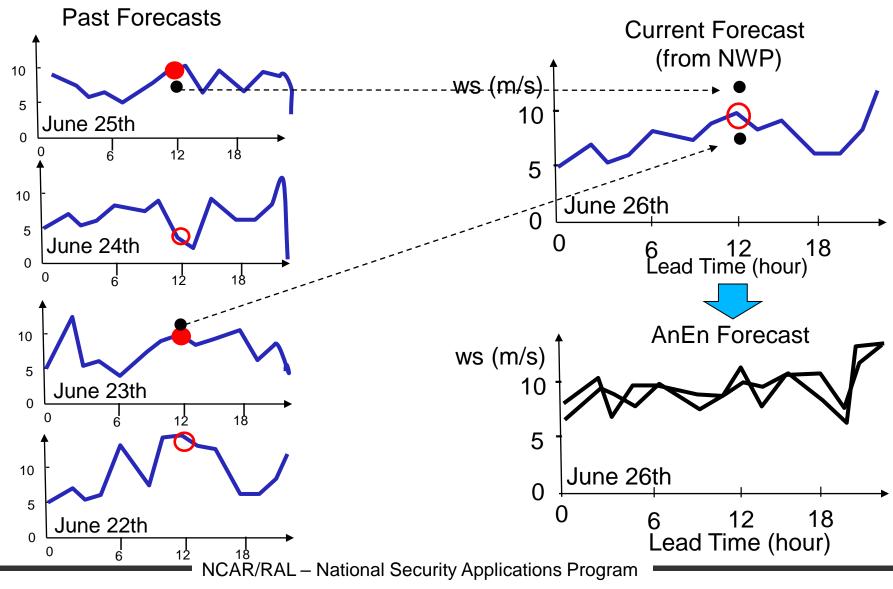
From: Lam et al., 2022. GraphCast: Learning skillful medium-range global weather forecasting. *arXiv preprint arXiv:2212.12794*.











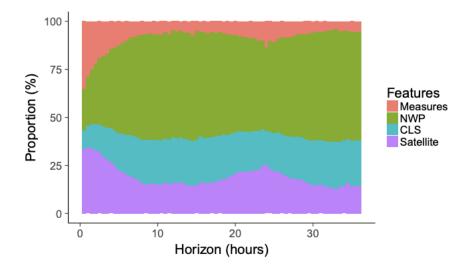
ICEM 2023

Similarity criterion to search and sort the past analog forecast

$$d_{t} = \|f_{t} - g_{t}\| = \sum_{v=1}^{N_{v}} \frac{w_{v}}{\sigma_{f^{v}}} \sqrt{\sum_{k=-t}^{+\tilde{t}} (f_{t+k}^{v} - g_{t+k}^{v})^{2}} \qquad N_{v}: \text{ Number of predictor variables} \\ w_{v}: \text{ Weight given to each predictor} \\ \text{Current Forecast, } f \\ \text{Past Forecast, } g \\ \hline t-1 \\ 0 \\ 1 \\ 2 \\ 3h \\ \text{Delle Monache et al. } MWR (2013) \\ \text{NCAR/RAL - National Security Applications Program} \\ \end{bmatrix}$$

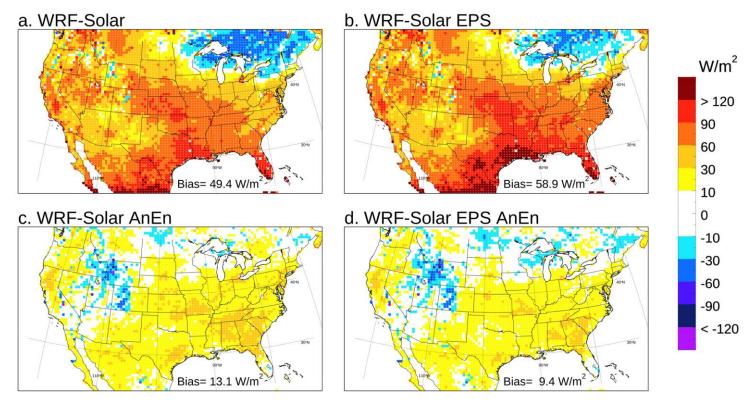
Seamless AnEn approach for Solar

- A seamless probabilistic forecasting approach based on the Analog Ensemble (AnEn) model, adapted to select the most appropriate input for each horizon from a pool of available data has been proposed by Carriere et al. 2019 *IEEE Transactions on Smart Grid*
- The model enhances short-term predictability by incorporating satellite images
- It achieves performance comparable to state-of-the-art models developed specifically for short-term (up to 6 hours) and day-ahead forecasting.
- Evaluation of the model was conducted on three PV plants in France over a one-year period.



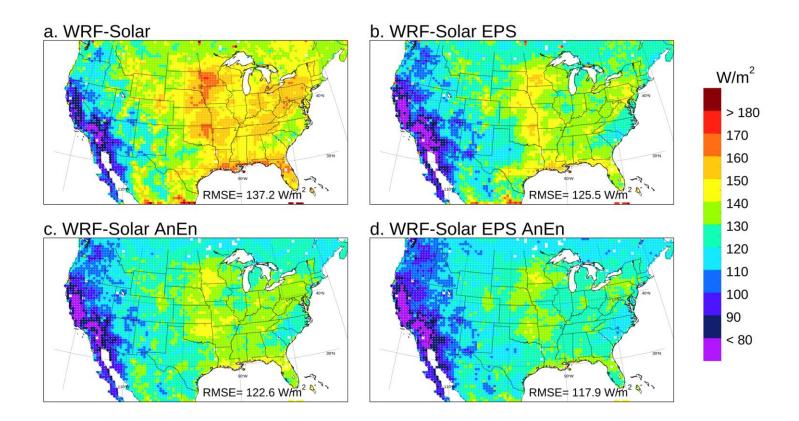
Recent developments of AnEn Solar Power (gridded predictions)

- AnEn Applied over CONUS using GHI National Solar Radiation Database (NSRDB) measurements
- Used to correct or calibrate WRF-Solar and WRF-Solar Ensemble Prediction System
- Resolution:9 km²
- 365 runs for 2018 used for verification

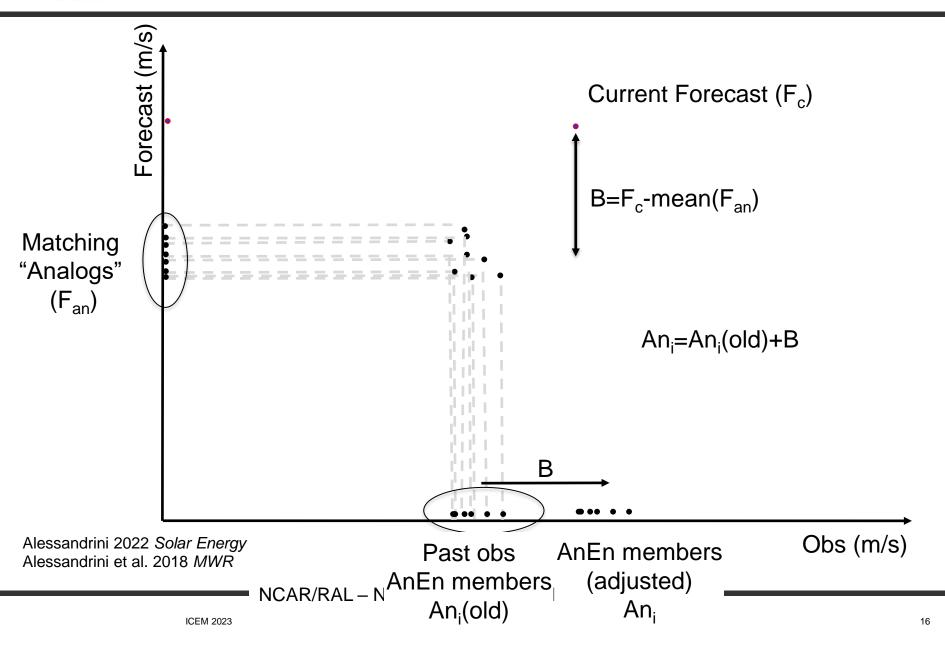


Alessandrini, S., Kim, J.H., Jimenez, P.A., Dudhia, J., Yang, J. and Sengupta, M., 2023. A Gridded Solar Irradiance Ensemble Prediction System Based on WRF-Solar EPS and the Analog Ensemble. *Atmosphere*, *14*(3), p.567.

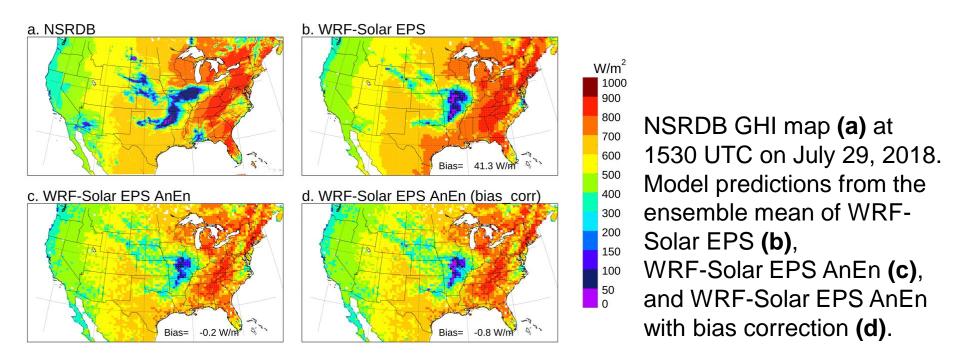
Solar Power (CONUS)



Bias Correction (BC) for rare events

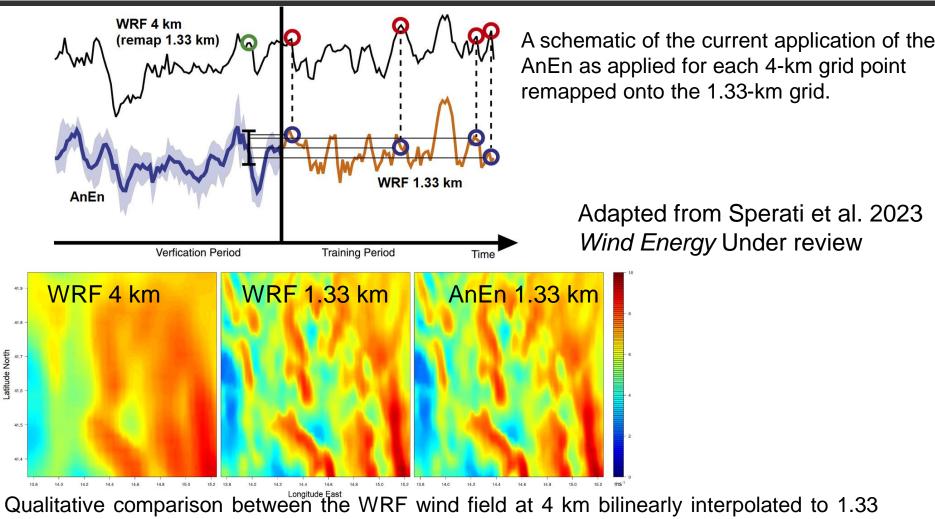


Bias Correction (BC) for rare events



- 1. Algorithm for addressing AnEn negative bias for rare events is applied as in Alessandrini 2022 Solar Energy
- 2. When comparing with the NSRDB map (a), a positive bias is introduced by the AnEn calibration (c) over the area with a GHI lower than 100 W/m² (GHI values under 50 W/m² are missing).
- 3. By using the bias correction for rare events (d) values under 50 W/m² are introduced back in the forecast, consistently with the NSRDB and WRF-Solar EPS, while still keeping the overall improvement in terms of bias reduction (−0.8 W/m²) very similar to that of the AnEn without the correction for rare events (c).

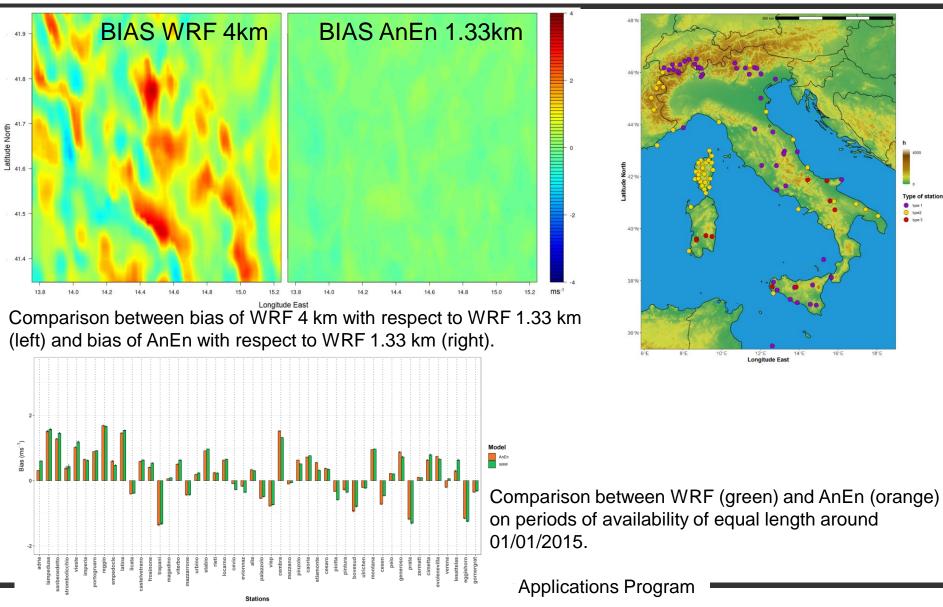
Italian Wind Atlas



km (left), the WRF wind field at 1.33 km (center) and the AnEn wind field (right). Averaged over the MAM season in 2015.

ICEM 2023

Italian Wind Atlas



19

- No need for initial conditions and model perturbation strategies to generate an ensemble.
- AnEn can use a higher resolution model for an ensemble prediction (since only one real-time forecast is needed for AnEn)
- Flow-dependent error characteristics are captured
- Very cheap real-time method compared to a standard meteorological ensemble
- AnEn has proved to generate bias-free reliable predictions on a wide range of applications
- AnEn needs a training dataset of "frozen" model data (computationally expensive but can be done off-line)
- Easy to be interpreted by looking at the selected "analog" dates

Acknowledgments

COLLABORATORS

- o Christopher Rozoff, Cheng, Tom Hopson, Jason Knievel, Andrew Monaghan, James Pinto (NCAR)
- 。 Simone Sperati (RSE, Italy)
- o Guido Cervone, Laura Clemente-Harding (Penn State University)
- Jan Keller (DWD)
- o Roland Stull (University of British Columbia)
- o Constantin Junk, Lueder von Bremen, Detlev Heinemann (ForWind, Carl von Ossietzky University)
- o Iris Odak, Kristian Horvath (Meteorological and Hydrological Service of Croatia)
- Badrinath Nagarajan (IBM)
- Federica Davo' (RSE)
- Caroline Draxl, Bri-Mathias Hodge, Jie Zhang (NREL)
- Tony Eckel (Climate Corporation)
- o Thomas Nipen (Norwegian Meteorological Institute)
- o Irina Djalalova, Jim Wilczak (NOAA)
- Emilie Vanvyve (UK Met Office)
- 。 Sam Hawkins, Jesper Nielsen Nissen (Vattenfall)
- Jessica Ma, Daran Rife (DNV GL)
- Will Lewis (University of Wisconsin, Madison)

SPONSORS

- 。 U.S. Department of Defense (DOD) Army Test and Evaluation Command (ATEC)
- 。 U.S. DOD Defense Threat Reduction Agency (DTRA)
- U.S. Department of Energy (DOE)
- U.S. National Aeronautics and Space Administration (NASA)
- U.S. National Renewable Energy Laboratory (NREL)
- U.S. National Oceanic and Atmospheric Administration (NOAA) Hurricane Forecast Improvement Program (HFIP)
- 。 Vattenfall, Vestas Wind Systems, Xcel Energy

Thanks! (AnEn is on github/ncar)

References

- 1. Delle Monache, L., T. Nipen, Y. Liu, G. Roux, and R. Stull, 2011: Kalman filter and analog schemes to postprocess numerical weather predictions. Mon. Wea. Rev., 139, 3554-3570
- 2. Delle Monache, L., T. Eckel, D. Rife, and B. Nagarajan, 2013: Probabilistic weather prediction with an analog ensemble. Mon. Wea. Rev., 141, 3498-3516
- 3. Mahoney, W.P., K. Parks, G. Wiener, Y. Liu, W.L. Myers, J. Sun, L. Delle Monache, T. Hopson, D. Johnson, S.E. Haupt, 2012: A wind power forecasting system to optimize grid integration. IEEE Trans. Sustainable Energy, 3, 670-682
- 4. Alessandrini, S., Delle Monache, L., Sperati, S., and Nissen, J, 2015. A novel application of an analog ensemble for short-term wind power forecasting. Renewable Energy, 76, 768-781
- 5. Vanvyve, E., Delle Monache, L., Rife, D., Monaghan, A., Pinto, J., 2015. Wind resource estimates with an analog ensemble approach. Renewable Energy, 74, 761-773
- 6. Nagarajan, B., Delle Monache, L., Hacker, J.P., Rife, D.L., Searight, K., Knievel, J.C. and Nipen, T.N., 2015. An evaluation of analog-based postprocessing methods across several variables and forecast models. Weather and Forecasting, 30(6), pp.1623-1643.
- 7. Djalalova, I., Delle Monache, L. and Wilczak, J., 2015. PM 2.5 analog forecast and Kalman filter post-processing for the Community Multiscale Air Quality (CMAQ) model. Atmospheric Environment, 108, pp.76-87.
- 8. Junk, C., Delle Monache, L., Alessandrini, S., Cervone, G. and Von Bremen, L., 2015. Predictor-weighting strategies for probabilistic wind power forecasting with an analog ensemble. Meteorologische Zeitschrift, 24(4), pp.361-379.
- 9. Alessandrini, S., Delle Monache, L., Sperati, S. and Cervone, G., 2015. An analog ensemble for short-term probabilistic solar power forecast. Applied energy, 157, pp.95-110.
- 10. Eckel, F.A. and Delle Monache, L., 2016. A hybrid NWP-analog ensemble. Monthly Weather Review, 144(3), pp.897-911.
- 11. Zhang, J., Draxl, C., Hopson, T., Delle Monache, L., and Hodge, B.-M., 2015. Comparison of deterministic and probabilistic wind resource assessment methods on numerical weather prediction. Accepted to appear on Applied Energy
- 12. Alessandrini, S., Delle Monache, L., Rozoff, C.M. and Lewis, W.E., 2018. Probabilistic Prediction of Tropical Cyclone Intensity with an Analog Ensemble. Monthly Weather Review, 146(6), pp.1723-1744.
- 13. Sperati, S., Alessandrini, S. and Delle Monache, L., 2017. Gridded probabilistic weather forecasts with an analog ensemble. Quarterly Journal of the Royal Meteorological Society, 143(708), pp.2874-2885.
- 14. Cervone, G., Clemente-Harding, L., Alessandrini, S. and Delle Monache, L., 2017. Short-term photovoltaic power forecasting using Artificial Neural Networks and an Analog Ensemble. Renewable Energy, 108, pp.274-286.
- 15. Keller, J.D., Delle Monache, L. and Alessandrini, S., 2017. Statistical downscaling of a high-resolution precipitation reanalysis using the analog ensemble method. Journal of Applied Meteorology and Climatology, 56(7), pp.2081-2095.
- 16. Alessandrini, S., Kim, J.H., Jimenez, P.A., Dudhia, J., Yang, J. and Sengupta, M., 2023. A Gridded Solar Irradiance Ensemble Prediction System Based on WRF-Solar EPS and the Analog Ensemble. Atmosphere, 14(3), p.567.
- 17. Alessandrini, S., Sperati, S. and Delle Monache, L., 2019. Improving the analog ensemble wind speed forecasts for rare events. Monthly Weather Review, 147(7), pp.2677-2692.
- 18. Alessandrini, S. and McCandless, T., 2020. The schaake shuffle technique to combine solar and wind power probabilistic forecasting. *Energies*. 13(10), p.2503 NCAR/RAL – National Security Applications Program