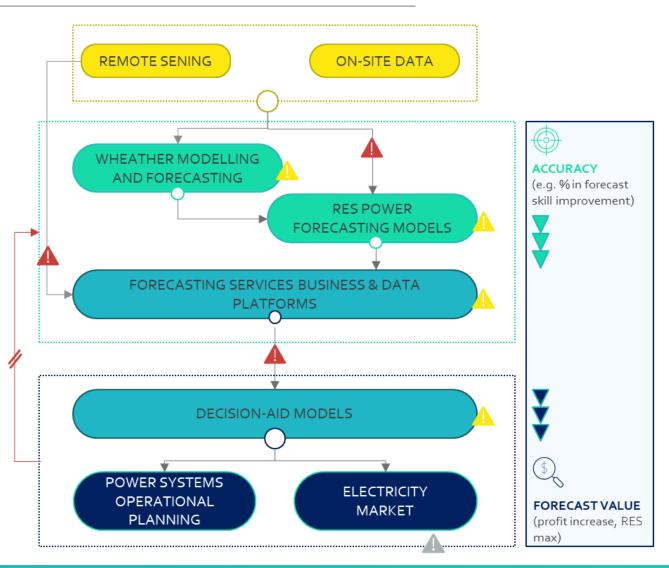


Innovative AI contributions to renewable energy forecasting

Georges Kariniotakis

Prof., Head of RES & Smart Energy Systems Group, Mines Paris, Centre PERSEE Coordinator of Smart4RES georges.kariniotakis@minesparis.psl.eu

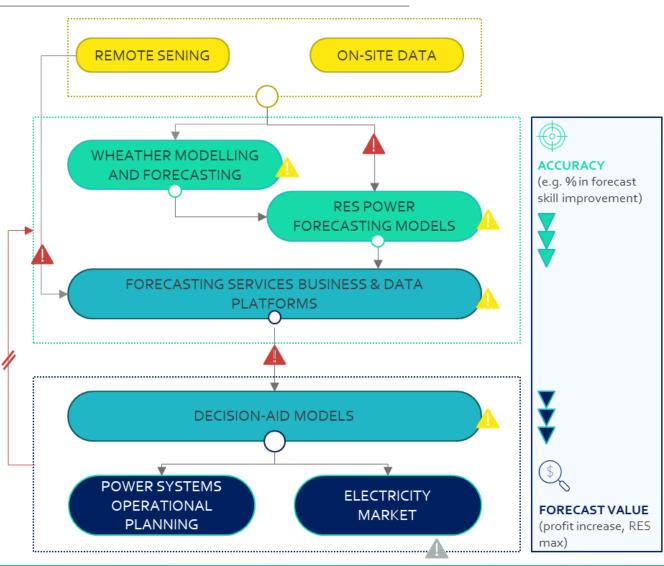


This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 864337

The « Forecast then Optimise » Model Chain

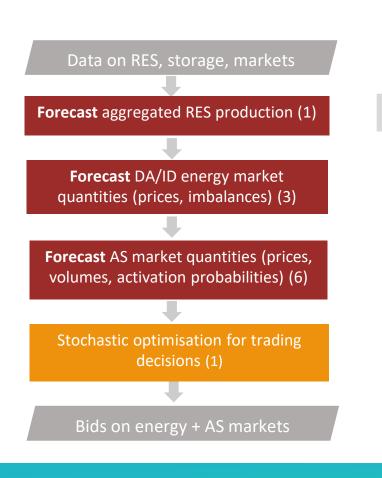
- Short-term forecasts (min-days ahead) of renewable (RES) generation are required for a safe and economic integration of RES into power systems and markets
- IA approaches can be present at each step of the model chain

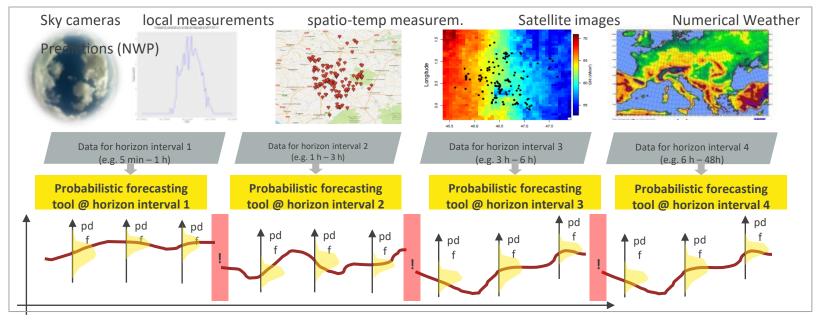
IA and renewable energies


- First research works on IA methods applied on renewable energies appeared in mid '90s.
- The 1st ever journal paper, where IA was applied in the renewable energies field was published in 1996 (ANN for wind power forecasting).
- Since then there is an explosion of academic works (i.e. ~600-700 papers on wind/solar forecasting per year).

62			onversion, Vol. 11, No. 4, December 1990
WIND POWER FORECASTI	NG USING ADVA	ANCED NEUR	AL NETWORKS MODELS.
G. N. Kariniotakis	G. S. Stavr	akakis	E. F. Nogaret
Ecole des Mines de Paris, Centre d'Energétique, 06904 Sophia-Antipolis, France.	Technical Univers Dept. of Electronic & 73100 Chania, Cr	Computer Eng.,	Ecole des Mines de Paris, Centre d'Energétique, 06904 Sophia-Antipolis, France.
Abstract - In this paper, an advanced recurrent high order neural networks the prediction of the power output p park. This model outperforms simp persistence, as well as classical method. The architecture of a forecasting m automatically by a new algorithm, th usually applied trial-and-error method line implementation of the develope advanced control system for the optim management of a real autonomous v system, is presented. <u>Keywords</u> : Short-term wind power for neural networks, wind-diesel power system I. <u>INTRODUCTION</u> Wind Energy Conversion Systems (WE	, is developed for profile of a wind ole methods like with the literature. is in the literature. odel is optimised at substitutes the h. Finally, the on- d model into an anal operation and wind-diesel power the cassting, recurrent ms. h accS) appear as an	oncerned with forece f an autonomous por VECS power output me step in the order The paper is stru- f-the-art on the sh iven. Then, a wind and evaluated using of f the Greek islam ptimisation of the ten presented. This hat are critical for th hat is, its ability to p as been trained. Finally, the impli-	ctured as following : initially, the state- ort-term wind forecasting problem is power forecasting model, is developed data from the wind-diesel power system d of Lemnos. An algorithm for the architecture of a forecasting model is algorithm optimises all the parameters e generalisation capability of the model redict data other than those on which it ementation of the developed model into system for the optimal operation and rind-diesel power system of the island of

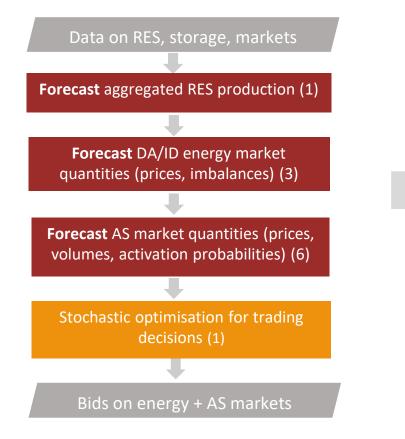
The « Forecast then Optimise » Model Chain


- Short-term forecasts (min-days ahead) of renewable (RES) generation are required for a safe and economic integration of RES into power systems and markets
- IA approaches can be present at each step of the model chain
- IA gives opportunities to think out of the box.



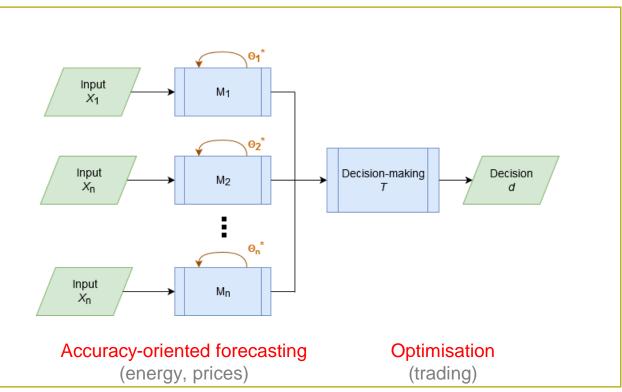
Beyond classical RES forecasting: Seamless forecasting

Example Use-Case: Optimisation of VPP participation in day-ahead (DA) + Intraday (ID) + Ancillary Service (AS) markets: (in parenthesis the number of models: 11 in total)


The usual RES forecasting consists in separate models for different time frames

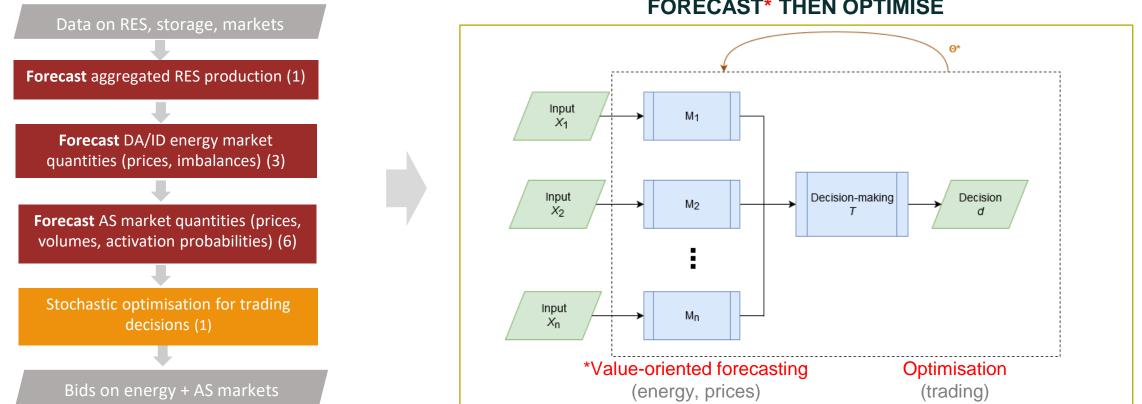
Seamless approach: Develop <u>a single</u> probabilistic model able to cover all time frames, all available data input and applicable to all technologies (wind/solar/combinations...). Have at least same level of performance as existing dedicated models.

Beyond classical RES forecasting: Value-oriented forecasting



Example Use-Case: Optimisation of VPP participation in day-ahead (DA) + Intraday (ID) + Ancillary Service (AS) markets: (in parenthesis the number of models: 11 in total)

The classic approach:

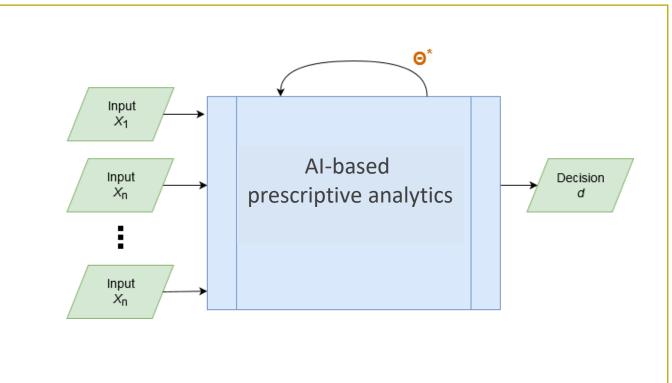

FORECAST THEN OPTIMISE

Beyond classical RES forecasting: Value-oriented forecasting

Example Use-Case: Optimisation of VPP participation in day-ahead (DA) + Intraday (ID) + Ancillary Service (AS) markets: (in parenthesis the number of models: 11 in total)

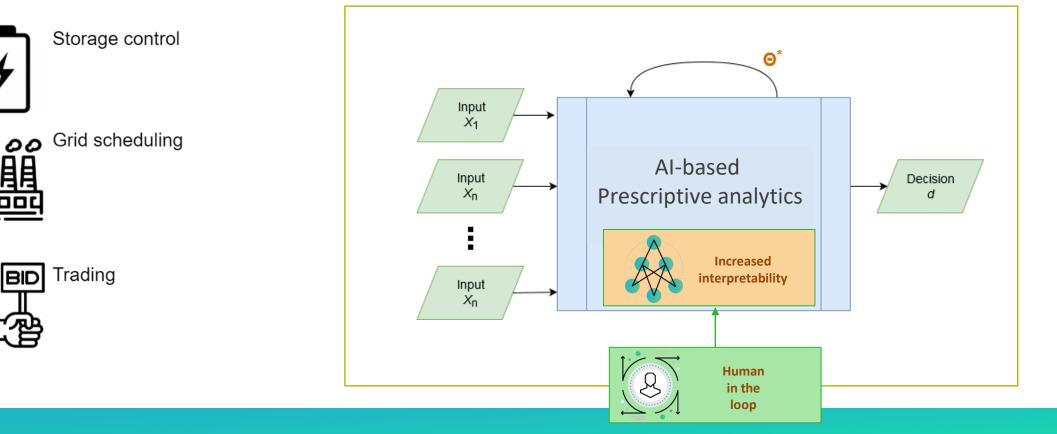
FORECAST* THEN OPTIMISE

T. Carriere, G. Kariniotakis. An Integrated Approach for Value-oriented Energy Forecasting and Data-driven Decision-making. Application to Renewable Energy Trading. IEEE Transactions on Smart Grid, (10.1109/TSG.2019.2914379). (hal-02124851)


Beyond classical RES forecasting: Prescriptive analytics

Example Use-Case: Optimisation of VPP participation in day-ahead (DA) + Intraday (ID) + Ancillary Service (AS) markets: (in parenthesis the number of models: 11 in total)

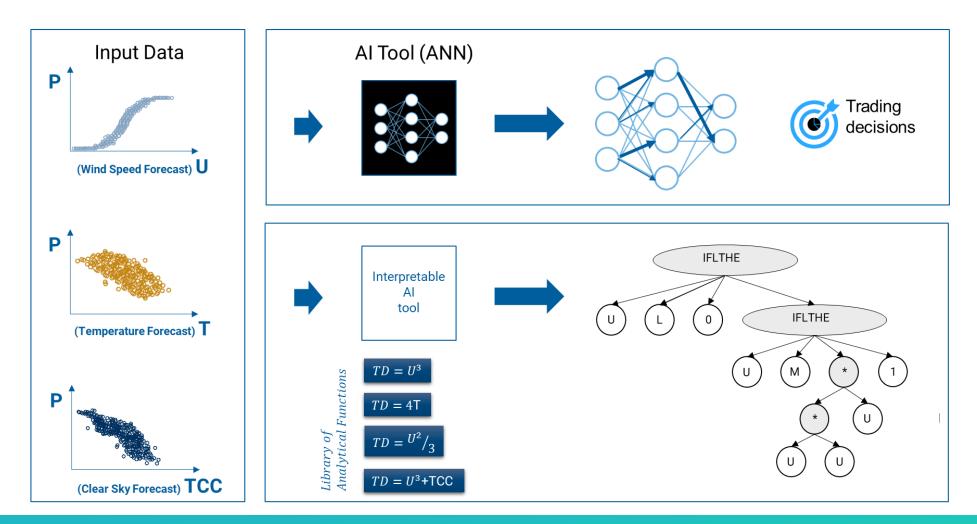
JOINT FORECASTING & OPTIMISATION



A. C. Stratigakos, S. Camal, A. Michiorri and G. Kariniotakis, "Prescriptive Trees for Integrated Forecasting and Optimization Applied in Trading of Renewable Energy," in *IEEE Transactions on Power Systems*, doi: 10.1109/TPWRS.2022.3152667.

...and beyond the presciptive approach

Example Use-Case: Optimisation of VPP participation in day-ahead (DA) + Intraday (ID) + Ancillary Service (AS) markets: (in parenthesis the number of models: 11 in total)



JOINT FORECASTING & OPTIMISATION

...and beyond the presciptive approach

Example Use-Case: Wind power trading using the Genetic Programming approach (natural language processing).

THANK YOU!

georges.kariniotakis@minesparis.psl.eu

https://www.linkedin.com/in/george-kariniotakis-2a868912/

Publications: https://cv.archives-ouvertes.fr/georges-kariniotakis

https://www.smart4res.eu/

The Smart4RES project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 864337

We have **5 PhD positions** open in this area : contact me if interested.