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Approaches to leveraging Al for Weather Forecasting
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Key Points:

An ensemble forecast system is
developed using convolution neural
networks (CNNs) to penerate data-
driven global forecasts

Only 3 s are required to compute

a large 320-member ensemble

of skillful 6-week sub-seasonal
predictions

Shorter lead time forecasts also show
skill, including a single deterministic
4-day forecast for Hurricane Irma
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Sub-Seasonal Forecasting With a Large Ensemble of
Deep-Learning Weather Prediction Models
Jonathan A. ‘.’V’eynl'3 , Dale R. Durran' (), Rich Caruana?® and Nathaniel Cresswell -Clayl

'Department of Atmospheric Sciences, University of Washington, Seattle, WA, USA, *Microsoft Research, Redmond,
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Abstract Wepresent an ensemble prediction system using a Deep Learning Weather Prediction
(DLWP) model that recursively predicts six key atmospheric variables with six-hour time resolution.

This computationally efficient model uses convolutional neural netwaorks (CNNs) on a cubed sphere grid
to produce global forecasts. The trained model requires just three minutes on a single GPU to produce

a 320-member set of six-week forecasts at 1.4° resolution. Ensemble spread is primarily produced by
randomizing the CNN training process to create a set of 32 DLWP models with slightly different learned
weights. Although our DLWP model does not forecast precipitation, it does forecast total column water
vapor and gives a reasonable 4.5-day deterministic forecast of Hurricane Irma. [n addition to simulating
mid-latitude weather systems, it spontaneously generates tropical cyclones in a one-year free-running
simulation. Averaged globally and aver a twao-year test set, the ensemble mean RMSE retains skill relative
to elimatology beyond two-weeks, with anomaly correlation coefficients remaining above 0.6 through six
days. Our primary application is to subseasonal-to-seasonal (S2S) forecasting at lead times from two to
six weeks. Current forecast systems have low skill in predicting one- or 2-week-average weather patterns
at §2S time scales. The continuous ranked probability score (CRPS) and the ranked probability skill score
(RPSS) show that the DLWP ensemble is only modestly inferior in performance to the European Center
for Medium Range Weather Forecasts (ECMWF) S2S ensemble over land at lead times of 4 and 5-6 weeks.
At shorter lead times, the ECMWF ensemble performs better than DLWP.

Plain Language Summary The world's leading weather forecasting institutions currently
rely on computationally expensive weather models running on massive supercomputers. In order to have
predictive skill for forecasts two to six weeks in the future, large ensembles of many nearly identical runs
of these models are required, but the computational resources needed for these ensembles scales with the
number of forecasts run. Since the resources needed rapidly approaches modern-day computing limits,
we explore the possibility of using computationally cheap weather models based on machine learning
algorithms which learn to reproduce the evolution of weather. Our machine-learning model is capable
of running 320 forecasts in three minutes on a single workstation, while the state-of-the-art model from
the European Center for Medium-Range Weather Forecasts (ECMWF) utilizes supercomputers to run 50
forecasts. Our ensemble weather model produces realistic forecasts of weather events such as Hurricane
Irma in 2017 and is even capable of nearly matching the performance of the ECMWF ensemble for
forecasts of temperature four to six weeks in the future.

1. Introduction

‘Weather forecasting relies heavily on data assimilation to estimate the current state of the atmosphere and
on numerical weather prediction (NWP) to approximate its subsequent evolution. The skill of such deter-
ministic weather forecasts is typically limited to about two weeks by the chaotic growth of small initial
errars and inaccuracies in our approximate madels of the atmosphere. On much longer, multi-month time
scales, the coupling of the atmosphere with slowly evolving ocean-land forcing allows skillful seasonal fore-
casts of monthly or seasonally averaged conditions. Between these two extremes, the production of skillful
one- or two-week averaged forecasts at lead times ranging roughly between two weeks and two months
(the subseasonal-to-seasonal or §28 time frame) has proven particularly challenging; yet there are many
societal sectors that would greatly benefit from improved S2S forecasts (White et al., 2017). Several major
operational centers have developed NWP-based ensemble systems focused on improving S28 forecasting
(Vitart et al., 2017).
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 Built deep-learning-based convolutional
neural network ensemble system for S2S
forecasting.

* Requires 3 min to produce a 320-member
6-wk ensemble forecast

« Similar scores ( CRPS and RPSS) for 4-wk
fx/ and 5-6-wk fx/ as ECMWF S2S
ensembles.
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Figure 13. Annual average RPSS skill maps for T; at weeks 5-6. Without bias correction: (a) DLWP ensemble, (b) ECMWF ensemble; with bias correction: (c)
DLWP ensemble, (d) ECMWF ensemble. The weighted global mean is noted at the lower left in each panel.
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Machine Learning for
Surface Layer Parameterization

Surface layer parameterizations model energy transfer  mose
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W4 different than the one trained

Fit random forest to each site to predict friction velocity, sensible
heat flux, and latent heat flux
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https://www.bbc.com/future/article/20230405-why-ai-is-becoming-impossible-for-humans-to-understand

Session Questions

How do we see business practices Iin the
energy industry changing in the future as
Innovative uses of Al proliferate?

How will it Improve energy integration?
How will iImprove the energy transition?
How will humans feel about being replaced
oy Al?

And will it be accepted?

What is the role of interpretable Al and is it
essential to full acceptance and

utilization?
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