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Approaches to leveraging AI for Weather Forecasting
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• Built deep-learning-based convolutional 

neural network ensemble system for S2S 

forecasting.

• Requires 3 min to produce a 320-member 

6-wk ensemble forecast

• Similar scores ( CRPS and RPSS) for 4-wk 

fx/ and 5-6-wk fx/ as ECMWF S2S 

ensembles.



Machine Learning for 
Surface Layer Parameterization

• Surface layer parameterizations model energy transfer 

(flux) from atmosphere to land surface

• Monin-Obukhov similarity theory  determines surface 

fluxes and stresses in atmospheric models. 

• Stability functions Φ𝑀 (momentum) and Φ𝐻 (heat) are 

determined empirically from field experiments.

• However, the stability functions show a large amount 

of variation.

• Instead, we will use machine learning flux estimates.
• We have therefore selected two data sets that provide multiyear 

records:

• KNMI-mast at Cabauw (Netherlands), 213 m tower, 2003 -

2017

• FDR tower near Scoville, Idaho, 2015 – 2017

• Fit random forest to each site to predict friction velocity, sensible 

heat flux, and latent heat flux

https://nevada.usgs.gov/et/measured.htm

Cabauw Idaho

1. McCandless, D.J. Gagne, T.C., B. Kosovic, S.E. Haupt, B. Yang, C. Becker, and J. Schreck, 2021: Machine Learning for 

Improving Surface Layer Flux Estimates, Boundary Layer Meteorology, https://doi.org/10.1007/s10546-022-00727-4.

✓ Random Forest and Neural Network 

both significantly outperform Monin-

Obukov Theory

✓ True even when applied to site that is 

different than the one trained



Session Questions

• How do we see business practices in the 

energy industry changing in the future as 

innovative uses of AI proliferate? 

• How will it improve energy integration? 

• How will improve the energy transition? 

• How will humans feel about being replaced 

by AI? 

• And will it be accepted? 

• What is the role of interpretable AI and is it 

essential to full acceptance and 
utilization?

Generated by AI: 

https://www.europarl.europa.eu/news/en/headlines/society

/20230601STO93804/eu-ai-act-first-regulation-on-artificial-

intelligence

https://www.bbc.com/future/article/20230405-why-ai-is-becoming-impossible-for-humans-to-understand
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