MITIGATION OF GLOBAL WARMING BY DIRECT COOLING OF THE ATMOSPHERE

Dimitre Karamanev

Department of Chemical and Biochemical Engineering

The problem (we all know that)

Current approaches to mitigate global warming

- Reduction of greenhouse gas concentration in the atmosphere:
 - Emission reduction
 - **Problems:**
 - Very slow: decades to stabilize temperature rise and then centuries to decrease the temperature
 - Technological, industrial and political challenges
 - CO₂ removal from the atmosphere (carbon capture and storage) *Problems:*
 - Removal, transportation and storage of CO₂
 - High cost
- Solar geoengineering

Problems:

- Global uncertainties and risks
- Challenging science and governance
- Bleaching of the sky

Decreasing temperature of a physical object?

By removing heat energy from it and transferring to another object

Mitigating global warming by heat transfer

By removing heat energy from the atmosphere and transferring to water (ocean or inland) and/or land

Amount of heat to be removed from the atmosphere?

To get rid of the atmospheric global warming:

Temperature Anomaly (°C) Common Baseline 1951-1980

1980

2000

2020

By how much the ocean will warm?

Amount of heat introduced to the ocean

Annual heat input to ocean (0-2000 m) due to the greenhouse effect:

1.5·10²² J

Annual heat input to ocean from the atmosphere to eliminate global warming: 10^{20} J

That is only 0.6% of warming of the ocean by greenhouse effect

Proposed technologies for air-water heat transfer

- 1. Direct heat exchange
- 2. Compression/expansion of air:
 - 2.1. Combined with energy storage
 - 2.2. Combined with energy transport
 - 2.3. Combined with power generation

2. Atmospheric cooling by compression/expansion

2. Atmospheric cooling by compression/expansion

2.1. Compression/expansion with energy storage

- The mechanical (electric) energy input can be done at different time than energy output
- This is the definition of energy storage

2.2. Compression/expansion with energy transport

Comparison of electric vs. compressed air energy transport:

- Capital costs are similar
- Transportation losses are similar
- Compressed air energy transport has an *intrinsic energy storage*!

2.3. Compression/expansion with power generation

Current status of compressed air energy storage

It can be seen that almost all CAES attempts <u>failed</u>. The only two remaining are Huntorf and McIntosh with 35% efficiency

E. Barbour et al., *Why is adiabatic compressed air energy storage yet to become a viable energy storage option?*, iScience **24** (2021).

Isothermal compressed air energy storage (ItCAES): *a patented world-wide and prototype tested (recently) technology*

Main features of ItCAES

As a compressor/expander (atmospheric cooling):

- The first commercially viable isothermal compressor/expander
- Thermodynamic efficiency: >98%
- To eliminate global warming:
 - 10 000 units of 300 MW to be built
 - Cost: \$150 Billion
 - Steel: 50 million metric tons (annual global steel production: 2 billion tons)
 - Copper: 2 million tons (annual production: 22 million tons)
- However: cannot be used longer than several decades

As an energy storage system:

- The first commercially viable compressed air energy storage technology
- Low cost: ~1 ¢/kWh (battery storage: ~15 ¢/kWh)
- Round-trip efficiency: 85% (similar to batteries)
- Very good recyclability

