The NSRDB Team

Dr. Tassos Golnas
Technology Manager,
Solar Energy Technologies Office,
U.S. Department of Energy

Dr. Manajit Sengupta

Dr. Yu Xie

Aron Habte

Dr. Brandon Benton

Paul Edwards

Haiku Sky

Grant Buster

Nicholas Gilroy
• The Physical Solar Model (PSM)
• What’s new in the National Solar Radiation Database (NSRDB)
• Validation of the NSRDB
• Data dissemination
• Future work
The PSM
The Physical Solar Model

Data Sources
- **GOES**
- **MERRA2** – Modern-Era Retrospective analysis for Research and Applications, Version 2 (MERRA-2) provides ancillary meteorological variables including aerosol optical depth (AOD) and the atmospheric profile.
- **MODIS** – Moderate Resolution Imaging Spectroradiometer (MODIS) provides satellite-derived aerosol optical depth (AOD) and albedo.
- **IMS** – Interactive Multisensor Snow and Ice Mapping System (IMS) provides daily snow coverage to represent snow albedo.

Model Inputs
- Cloud Properties
- Atmospheric Profile
- Aerosol Properties
- Surface Albedo
- Snow Albedo

Radiative Transfer Model
- FARMS – Fast All-sky Radiation Model for Solar (FARMS) applications developed by NREL. This is a suite of radiative transfer models that represent how solar radiation interacts with the atmosphere and the Earth’s land cover as it reaches the surface.
- **GHI**
- **DNI**
- **DHI**

Solar Irradiance Time-Series Variables
What’s New in the NSRDB
Geostationary Satellites in the NSRDB
NSRDB Datasets

- Time series data – depends on satellite (e.g. GOES coverage 1998-2021)
- Typical Meteorological Year (updated every year)
- Cloud type, optical depth and effective radius
- Aerosol optical depth
- Surface Albedo including snow
- Temperature, humidity and wind speed
- Ultraviolet radiation (UV-A and UV-B)
- Spectral data (2001 wavelengths)
<table>
<thead>
<tr>
<th>Version</th>
<th>Effective Date</th>
<th>Data Years*</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1.0</td>
<td>9/23/2019</td>
<td>2018+</td>
<td>Complete refactoring of NSRDB processing code for NSRDB 2018</td>
</tr>
<tr>
<td>3.1.2</td>
<td>6/8/2020</td>
<td>2020</td>
<td>Added feature to adjust cloud coordinates based on solar position and shading geometry.</td>
</tr>
<tr>
<td>3.2.0</td>
<td>3/17/2021</td>
<td>2020</td>
<td>Enabled cloud solar shading coordinate adjustment by default, enabled MLClouds machine learning gap fill method for missing cloud properties (cloud fill flag #7)</td>
</tr>
<tr>
<td>3.2.1</td>
<td>1/12/2021</td>
<td>2021</td>
<td>Implemented an algorithm to re-map the parallax and shading and corrected cloud coordinates to the nominal GOES coordinate system.</td>
</tr>
<tr>
<td>3.2.2</td>
<td>2/25/2022</td>
<td>1998-2021</td>
<td>Implemented a model for snowy albedo as a function of temperature from MERRA2 based on the paper "A comparison of simulated and observed fluctuations in summertime Arctic surface albedo" by Becky Ross and John E. Walsh</td>
</tr>
</tbody>
</table>
PSM Updates Included in Current NSRDB (1998-2021)

- Parallax correction for cloud location, cloud shading and remapping
- Gap-filling of missing cloud properties
- New algorithm for snow-albedo based on surface temperature

Updated surface albedo on March 1, 2020 (based on Ross and Walsh (1987)).
Future Implementation
<table>
<thead>
<tr>
<th>Version</th>
<th>Effective Date</th>
<th>Data Years*</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.0</td>
<td>May 2023</td>
<td>2022</td>
<td>Implement FARMS-DNI model to calculate solar radiation under cloudy conditions.</td>
</tr>
<tr>
<td>Spectral</td>
<td>June 2023</td>
<td>1998-2022</td>
<td>Implement clear-sky spectra Implement spectral-mismatch correction factor for multiple PV technologies</td>
</tr>
</tbody>
</table>
Validation of the FARM-DNI model

- DNI for 2 km grids every 5 min from 2019-2021 is computed using the NSRDB PSM with Lambert law, DISC, and FARMS-DNI.
- The satellite-based simulation is validated using surface observations.
- 6 and 13 stations (divided by the red line) are used to validate the data from GOES-West and GOES-East, respectively.

Evaluation of Cloudy-sky Identification

Simple criteria to identify cloudy sky from ground measurements and satellites:

✓ (1) GHI < GHI (clear)
✓ (2) DNI < DNI (clear)
✓ (3) categorized as cloudy by satellite
✓ (2) solar zenith smaller than 80°
✓ (3) GHI > 5 W/m², (4) DNI > 50 W/m²

ARM SGP cloud fraction from sky-imager used for validation:

– (1) 6351 scenes identified as cloudy from both ground and satellite data.
– (2) 5133 scenes (81%) identified as cloudy (with cloud fraction > 80%).
– This number increases to 92% for cloud fraction > 60%.

In general ground and satellite measurements can confidently identify cloudy scenes.
Cloud fraction is estimated for case when:

1. surface observed GHI and DNI are smaller than clear-sky (solid)
2. ratio between DNI and clear-sky DNI (cloudy when <0.6 (dashed)).

For high confidence cloudy conditions, FARMS-DNI performance better than DISC.
Comparing DNI from FARMS DNI vs DISC

For all sites we find that for confidently cloudy conditions, FARMS-DNI significantly improved performance than DISC.
Comparing DNI from FARMS DNI vs DISC

Overcast cloud scenes (cloud fraction higher than 80%)

![Graph showing MBE (W/m²) for different locations under overcast conditions.](image-url)
Comparing DNI from FARMS DNI vs DISC

All-sky conditions

MBE (W/m²)
Data Quality and Validation
NSRDB Validation for PSM v 3.2

Cloud Cover
- All Sky
- Cloudy
- Clear
Data Dissemination
Data Dissemination

NSRDB Access:

• By point location or a small area can be downloaded through the NSRDB Data Viewer (https://maps.nrel.gov/nsrdb-viewer/)

• By application programming interface to access larger quantities of data through automated approaches (https://nsrdb.nrel.gov/data-sets/api-instructions.html)

• Through the Highly Scalable Data Service hosted on Amazon Web Services (https://nsrdb.nrel.gov/data-sets/nsrdb-data-hsds-demo.html).

Fully reprocessed data for the GOES extent using PSM V3.2.2 and covering 1998-2021 has been released. 2022 data calculated using PSM V4.0 will be released in September 2023.
Future Development

<table>
<thead>
<tr>
<th>Feature</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Investigate the availability of aerosol data sets from GOES-16 and GOES-17 satellites.</td>
<td></td>
</tr>
<tr>
<td>Improvement in the accuracy of spectral datasets from the NSRDB</td>
<td></td>
</tr>
<tr>
<td>Custom Typical Meteorological Year in the plane-of-array.</td>
<td></td>
</tr>
<tr>
<td>High-resolution cloud properties (500 m) to get cloud fraction and improved cloud optical depth.</td>
<td></td>
</tr>
<tr>
<td>A 50-year projected solar radiation data set going out to 2070 from regional climate models.</td>
<td></td>
</tr>
<tr>
<td>Inclusion of Meteosat to cover Europe and Africa (2007-2022)</td>
<td></td>
</tr>
</tbody>
</table>
The NSRDB paper:

Primary reference

Publication freely available on website (https://nsrdb.nrel.gov).

https://doi.org/10.1016/j.rser.2018.03.003.
Thank You!
Contact: Manajit.Sengupta@nrel.gov