

Identifying statistical behaviors explaining the different performances of site-adaptation of GHI depending on the satellite database

Loïc Yezeguelian

Solaïs Centre O.I.E., Mines Paris - PSL

SITE ADAPTATION FOR BANKABLE DATASET

TMY: Typical Meteorological Year

- Paradigm used to build all yield reports
- Based on satellite historical timeseries (10 to 20 years)

Satellite databases: timeseries may be biased

- 3.5% uncertainty on long term MBE (%) for the best providers
- Less precise P50 yield and greater P50/P90 gap
 - Need to calibrate using a short-term measurement campaign (minimum 1 year)

KERNEL DENSITY MAPPING CALIBRATION (KDM)

- > GOAL: map the cumulative distribution functions on a short term campaign to remove the long term bias
- > WHY KDM: benchmarked as one of the most effective bias removal algorithms [1]

3

ASSESS CALIBRATION PERFORMANCE

Validation dataset

- Quality long-term pyranometer data were needed
- Seven BSRN stations were selected

BSRN station	Period used
Cabauw	2007-2018
Camborne	2004-2017
Carpentras	2007-2018
Cener	2009-2018
Lindenberg	2004-2017
Palaiseau	2007-2018
Payerne	2004-2013

icem 2023

icem 2023

ASSESS CALIBRATION REMAINING BIAS

Monte Carlo Framework

ZSOLAÏS

RESULTS

- 12 months-long campaigns
- 100 random campaigns per BSRN station

MBE STD (%):

Solargis: 0.63% HC3: 1.33%

> Why is it non null ?

3E: **0.73%**

> Why is it dependent on the database ?

6

icem 2023

3ESolargisHC3

VISUAL INTERPRETATION

- Calibration errors do not originate from the method, but from the data !
- When short-term data (meas and sat) don't have the same distribution « error » compared to their respective long-term, the satellite distribution is not properly map

POSSIBLE EXPLANATIONS

- NOT STATISTICALLY STABLE?
 - One year of measurements is not enough?
 - ~96*365/2 = 17520 sample points
 - KDE to smooth the distribution
- NON STATIONNARY?
 - LT and ST do not follow the same distributions
 - ST distribution depends on the starting date

• BSRN?

- Class A pyrano. 1,5% error at 1min timestep
- But resampled at 15min
- \circ And we only consider yearly bias
- SATELLITE?
 - \circ Assumed to be stable over time

Let's consider the i.i.d. case to see if we can determine any persistent bias

OBSERVED STATISTICAL BEHAVIOR

> We have managed to demonstrate that for quantile mapping calibration in the i.i.d. case:

$$\varepsilon_{ST}$$
 being a known differential indicator
 $\varepsilon_{ST} = h^2 \sum_{l=1}^{b} \delta_{ST,l} \sum_{p=l}^{b} \frac{\delta_p - \eta_{ST}[\{M\}_{ST}]_p}{f_{ST}[\{M\}_{ST}, r]_p}$

> The visual interpretation lets us think that:

Δ

Calibration seems to work well when at any point of the interval $CDF_{ST_{sat}} - CDF_{LT_{sat}} = CDF_{ST_{mes}} - CDF_{LT_{mes}}$ So let's consider the average variable $\hat{\Delta} = \frac{1}{GHI_{max}} \int_{0}^{GHI_{max}} (CDF_{ST_{sat}} - CDF_{LT_{sat}}) - (CDF_{ST_{mes}} - CDF_{LT_{mes}})$

> We get the following:

$$=\frac{\Delta_{LT}-\Delta_{ST}}{GHI_{max}}=\frac{\Delta_{LT}^{*}-\varepsilon_{ST}}{GHI_{max}}$$
 meaning that $\Delta_{LT}^{*}=GHI_{max}\hat{\Delta}+\varepsilon_{ST}$

icem 2023

GAUSSIAN CASE

- > We tried to understand ε_{ST} by identifying with the gaussian case:
 - GAUSSIAN CASE (i.i.d.): if Satellite $\sim N(\mu_S, \sigma_S^2)$ and Measurements $\sim N(\mu_M, \sigma_M^2)$

$$\Delta_{LT}^* = \frac{\widehat{\sigma_{M_{ST}}}}{\widehat{\sigma_{S_{ST}}}} \left(\widehat{\mu_{S_{LT}}} - \widehat{\mu_{S_{ST}}} \right) - \left(\widehat{\mu_{M_{LT}}} - \widehat{\mu_{M_{ST}}} \right) \qquad \text{so i}$$

o in this case

> So that ε_{ST} has good chances to be negligeable

VALIDATION

Previously described Monte-Carlo experiment run on CARPENTRAS:

VALIDATION

• SCATTERPLOT REGRESSION ON 100 CAMPAIGNS:

BSRN	Database	$\Delta_{LT}^* = \alpha \hat{\Delta} + \beta$			$\Delta_{LT}^* = \alpha(\hat{\Delta} + \frac{\varepsilon_{ST}}{GHI_{max}}) + \beta$			GHI _{max}		
		α	β	CC	α	β	CC			
CAB	Solargis HC3 CAMS	285.2 275.6 213.7	0.272 0.303 0.166	0.9835 0.9969 0.9989	249.1 249.0 241.6	0.160 0.193 0.088	0.9999 0.9999 0.9999		249.2 248.1 245.0	
CAM	Solargis HC3 CAMS	337.7 284.6 254.5	0.393 0.278 0.352	0.9852 0.9671 0.9883	255.8 267.2 250.1	0.115 0.194 0.150	0.9999 0.9998 0.9999		253.2 259.3 249.2	
CAR	Solargis HC3 CAMS	279.5 269.0 242.3	0.072 0.193 -0.155	0.9967 0.9978 0.9896	268.7 265.2 266.7	0.109 0.196 0.154	1.0000 0.9999 1.0000		268.0 266.0 269.9	
CEN	Solargis HC3 CAMS	300.4 269.9 261.5	0.277 0.216 -0.0005	0.9598 0.9723 0.9965	273.8 265.5 267.7	0.196 0.199 0.022	0.9997 0.9997 0.9999		271.6 267.4 271.3	
LIN	Solargis HC3 CAMS	263.0 274.1 229.8	0.120 0.265 0.027	0.9773 0.9980 0.9977	246.4 249.1 243.0	0.103 0.218 0.086	0.9998 1.0000 1.0000		247.9 249.2 244.6	
PAL	Solargis HC3 CAMS	229.5 254.0 253.4	-0.376 0.178 0.043	0.9755 0.9808 0.9936	255.8 251.3 254.9	0.059 0.125 0.041	0.9997 0.9999 0.9999	1	258.3 251.9 253.1	
PAY	Solargis HC3 CAMS	267.8 280.4 243.1	0.147 0.239 0.104	0.9864 0.9935 0.9959	268.6 264.8 266.2	0.160 0.199 0.044	0.9996 1.0000 0.9998		265.3 264.1 263.2	

• $\widehat{\Delta} + \frac{\varepsilon_{ST}}{GHI_{max}}$ STANDARD DEVIATION ON 100 CAMPAIGNS:

	SOLARGIS	HC3	CAMS
CAB	0,002	0,0048	0,0054
CAM	0,0021	0,0020	0,0044
CAR	0,0022	0,0041	0,0057
CEN	0,0015	0,0027	0,0078
LIN	0,0022	0,0052	0,0051
PAL	0,0028	0,0026	0,0048
PAY	0,0016	0,0025	0,0017

Calibration overall performance is better when systematic errors are consistent from one year to another

- Even for i.i.d. quantile mapping: $\Delta_{LT}^* = \Delta_{LT} - \Delta_{ST} + \epsilon_{ST}$
- For naive bias correction $\varepsilon_{ST} = 0$
- The longer the ST the better: $\Delta_{LT} \Delta_{ST} \rightarrow 0$
- Satellite databases don't have the same calibration performance, because their Â distribution (=unconsistency of the error throughout years) are different
- For a same $\hat{\Delta}$ distribution, calibration works better when GHI_{max} is high
- But even for 1 year and no i.i.d. assumption, really decent performance (<1% on most sites and with most providers)

CONJECTURE: same results for other calibration methods

CONCLUSION