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WRF-Solar 

❑ Deterministic prediction system

❑ Jimenez et al. (2016)

❑ FARMS radiation scheme

❑ Deng shallow cumulus scheme

WRF-Solar EPS

❑ Ensemble prediction system

❑ Adding stochastic perturbation 

to six physics schemes in 

WRF-Solar

❑ 10 ensemble members

NSRDB OBS 

❑ National Solar Radiation Data Base

(https://nsrdb.nrel.gov)

❑ 4-km horizontal resolution, 30-min 

interval (1998 to 2018)

❑ Sengupta et al. (2018)

1. WRF-Solar Forecasting systems

NSRDB (GHI)  at 1530 UTC 16 April 2018 GHI forecast from WRF-Solar GHI forecast from WRF-Solar EPS



WRF-Solar EPS

(1) Thompson microphysics,

(2) Mellor–Yamada–Nakanishi–Niino planetary boundary layer parameterization, 

(3) The Noah land surface model, 

(4) Deng’s shallow cumulus parameterization,

(5) the Fast-All-sky Radiation Model for Solar applications, 

(6) a parameterization of the effects of unresolved clouds based on relative humidity. 

• Six parameterizations affecting solar irradiance and cloud processes are 

selected: 

• Tangent linear models of these parameterizations to quantify sensitivities of the 

input variables to the parameterizations and select the ones introducing the most 

significant uncertainties in the output variables

• As a result of this analysis, we selected 14 state variables. In the final step, 

we introduced stochastic perturbations to these variables during the model 

integration in order to create the WRF-Solar EPS component



2. Analog ensemble method

time
t = 0 h

Training Period
24-h AnEn GHI forecast

(probabilistic)

Archive of past 24-h WRF-Solar forecasts
24-h WRF-Solar GHI forecast

NSRDB GHI (DNI) estimates

WRF-Solar predictors used for GHI (DNI):GHI and DNI equally weighted

WRF-Solar EPS predictors used for GHI (DNI): GHI (DNI) and GHI spread (DNI spread), equally weighted



3. Experiment design

Prediction systems WRF-Solar forecasting systems 

Reference configuration is in the WRF-Solar web site. 

(https://ral.ucar.edu/projects/wrf-solar)

Observation NSRDB

Forecast variable GHI and DNI

Lead time 24 hours of the second day forecast

Training 1 January 2016 to 31 December 2017

Forecast period 

(verification)

2018

Experiments 1) Verification over 8520 points over CONUS domain 

(Every 5 x 5 WRF Grid points)

Every 5 x 5 WRF Solar Grid points



3. Experiment design: Goals

Every 5 x 5 WRF Solar Grid points

1. To assess and compare WRF-Solar and WRF-Solar EPS performances in 

different climatic regions of the US in terms of deterministic GHI and DNI 

predictions. 

2. To compare the performance of the computationally cheaper ensemble, 

the WRF-Solar AnEn, against the more expensive WRF-Solar EPS.

3. To quantify the improvements obtained by the AnEn with respect to the 

raw models to which it is applied (WRF-Solar and WRF-Solar EPS).



4. Results: RMSE maps for GHI forecast over CONUS

1. WRF-Solar EPS reduces the RMSE compared to WRF-Solar by ~8% in GHI prediction

2. AnEn reduces the RMSE in WRF-Solar EPS by ~6% in GHI prediction.

3. WRF-Solar AnEn (ensemble) very competitive even if not the best model in terms of RMSE

RMSEBIAS



4. Results: RMSE timeseries for GHI forecast over CONUS

BIAS

RMSE

Largest biases (GHI overestimated) during summer related 

to under-estimation of convective clouds 

AnEn post-processing improves positive BIAS in summer 



4. Results: Rare events (high cloudiness)

1. Algorithm for addressing AnEn negative bias for rare events is applied as in Alessandrini 2022 Solar Energy

2. When comparing with the NSRDB map (a), a positive bias is introduced by the AnEn calibration (c) over the area with a 

GHI lower than 100 W/m2 (GHI values under 50 W/m2 are missing).

3. By using the bias correction for rare events (d) values under 50 W/m2 are introduced back in the forecast, consistently 

with the NSRDB and WRF-Solar EPS, while still keeping the overall improvement in terms of bias reduction (−0.8 W/m2) 

very similar to that of the AnEn without the correction for rare events (c). 

NSRDB GHI map (a) at 1530 UTC 

on July 29, 2018. Model predictions 

from the ensemble mean of WRF-

Solar EPS (b), 

WRF-Solar EPS AnEn (c), and 

WRF-Solar EPS AnEn with bias 

correction (d).



4. Results: RMSE/SPREAD and CRPS maps for GHI forecast over CONUS

1. RMSE/SPREAD ratio is significantly underestimated by WRF-Solar EPS even in less cloudiness (overconfident)

2. There is not enough variability (in terms of cloudiness) across the members

3. AnEn improves RMSE/SPREAD consistency in WRF-Solar EPS

4. WRF-Solar AnEn ensemble is again very competitive in terms of statistical consistency and overall performance (CRPS)

CRPSRMSE/SPREAD



5. Summary
• Both WRF-Solar and the WRF-Solar EPS overestimate GHI and DNI, which indicates that 

cloudiness is generally underestimated. 

• For RMSE, the WRF-Solar EPS improves upon WRF-Solar both for DNI and GHI with a reduction 

in RMSE in many areas. 

• The WRF-Solar AnEn (computationally cheaper) outperforms the WRF-Solar EPS both in terms of 

deterministic scores (lower bias and better RMSE) and probabilistic scores with improved 

statistical consistency and overall lower CRPS. 

• The benefit of the AnEn calibration is evident for both models (WRF-Solar and WRF-Solar EPS).

• The full benefit of using the WRF-Solar EPS is evident only after the AnEn calibration process, 

allowing better performances than the WRF-Solar AnEn in all three metrics (bias, RMSE, and 

correlation) for both GHI and DNI. 



4.1 Results: Training period and predictors

✓ We tested mean and standard deviation of GHI, DNI, 2-m temperature, and total 

column of water vapor from WRF-Solar as predictors

✓ RMSE and Bias shows the best results when mean and standard deviation of GHI and 

DNI are used as predictors (4P)

1P GHI_M

2P GHI_M, GHI_S

4P GHI_M, GHI_S, DNI_M, DNI_S

4P_T GHI_M, GHI_S, 2m_T_M, 2m_T_S

4P_W GHI_M, GHI_S, W_M, W_S

wo weights optimization

wh weights optimization
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