An Irradiance Probabilistic Prediction System based on WRF-Solar EPS and the Analog Ensemble

Stefano Alessandrini, Ju-Hye Kim, Pedro A. Jimenez, Jimy Dudhia (NCAR)
Manajit Sengupta and Jaemo Yang (NREL)

Funding provided by the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Solar Energy Technologies Office
Outline

1. WRF-Solar forecasting systems
2. Analog Ensemble method
3. Experiment design
4. Results
 I. Training period and predictors
 II. WRF-Solar forecasting systems over CONUS
5. Summary
1. WRF-Solar Forecasting systems

NSRDB OBS
- National Solar Radiation Data Base (https://nsrdb.nrel.gov)
- 4-km horizontal resolution, 30-min interval (1998 to 2018)
- Sengupta et al. (2018)

WRF-Solar
- Deterministic prediction system
- Jimenez et al. (2016)
- FARMS radiation scheme
- Deng shallow cumulus scheme

WRF-Solar EPS
- Ensemble prediction system
- Adding stochastic perturbation to six physics schemes in WRF-Solar
- 10 ensemble members

NSRDB (GHI) at 1530 UTC 16 April 2018

GHI forecast from WRF-Solar

GHI forecast from WRF-Solar EPS
WRF-Solar EPS

• Six parameterizations affecting solar irradiance and cloud processes are selected:
 (1) Thompson microphysics,
 (2) Mellor–Yamada–Nakanishi–Niino planetary boundary layer parameterization,
 (3) The Noah land surface model,
 (4) Deng’s shallow cumulus parameterization,
 (5) the Fast-All-sky Radiation Model for Solar applications,
 (6) a parameterization of the effects of unresolved clouds based on relative humidity.

• Tangent linear models of these parameterizations to quantify sensitivities of the input variables to the parameterizations and select the ones introducing the most significant uncertainties in the output variables

• As a result of this analysis, we selected 14 state variables. In the final step, we introduced stochastic perturbations to these variables during the model integration in order to create the WRF-Solar EPS component
2. Analog ensemble method

WRF-Solar predictors used for GHI (DNI): GHI and DNI equally weighted
WRF-Solar EPS predictors used for GHI (DNI): GHI (DNI) and GHI spread (DNI spread), equally weighted
3. Experiment design

<table>
<thead>
<tr>
<th>Prediction systems</th>
<th>WRF-Solar forecasting systems Reference configuration is in the WRF-Solar web site. (https://ral.ucar.edu/projects/wrf-solar)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Observation</td>
<td>NSRDB</td>
</tr>
<tr>
<td>Forecast variable</td>
<td>GHI and DNI</td>
</tr>
<tr>
<td>Lead time</td>
<td>24 hours of the second day forecast</td>
</tr>
<tr>
<td>Training</td>
<td>1 January 2016 to 31 December 2017</td>
</tr>
<tr>
<td>Forecast period (verification)</td>
<td>2018</td>
</tr>
<tr>
<td>Experiments</td>
<td>1) Verification over 8520 points over CONUS domain (Every 5 x 5 WRF Solar Grid points)</td>
</tr>
</tbody>
</table>

![Every 5 x 5 WRF Solar Grid points](image_url)
3. Experiment design: Goals

1. To assess and compare WRF-Solar and WRF-Solar EPS performances in different climatic regions of the US in terms of deterministic GHI and DNI predictions.

2. To compare the performance of the computationally cheaper ensemble, the WRF-Solar AnEn, against the more expensive WRF-Solar EPS.

3. To quantify the improvements obtained by the AnEn with respect to the raw models to which it is applied (WRF-Solar and WRF-Solar EPS).
4. Results: RMSE maps for GHI forecast over CONUS

1. WRF-Solar EPS reduces the RMSE compared to WRF-Solar by ~8% in GHI prediction.

2. AnEn reduces the RMSE in WRF-Solar EPS by ~6% in GHI prediction.

3. WRF-Solar AnEn (ensemble) very competitive even if not the best model in terms of RMSE.
4. Results: RMSE timeseries for GHI forecast over CONUS

Largest biases (GHI overestimated) during summer related to under-estimation of convective clouds

AnEn post-processing improves positive BIAS in summer
4. Results: Rare events (high cloudiness)

1. Algorithm for addressing AnEn negative bias for rare events is applied as in Alessandrini 2022 *Solar Energy*
2. When comparing with the NSRDB map (a), a positive bias is introduced by the AnEn calibration (c) over the area with a GHI lower than 100 W/m2 (GHI values under 50 W/m2 are missing).
3. By using the bias correction for rare events (d) values under 50 W/m2 are introduced back in the forecast, consistently with the NSRDB and WRF-Solar EPS, while still keeping the overall improvement in terms of bias reduction (-0.8 W/m2) very similar to that of the AnEn without the correction for rare events (c).
4. Results: RMSE/SPREAD and CRPS maps for GHI forecast over CONUS

1. RMSE/SPREAD ratio is significantly underestimated by WRF-Solar EPS even in less cloudiness (overconfident)

2. There is not enough variability (in terms of cloudiness) across the members

3. AnEn improves RMSE/SPREAD consistency in WRF-Solar EPS

4. WRF-Solar AnEn ensemble is again very competitive in terms of statistical consistency and overall performance (CRPS)
5. Summary

• Both WRF-Solar and the WRF-Solar EPS overestimate GHI and DNI, which indicates that cloudiness is generally underestimated.

• For RMSE, the WRF-Solar EPS improves upon WRF-Solar both for DNI and GHI with a reduction in RMSE in many areas.

• The WRF-Solar AnEn (computationally cheaper) outperforms the WRF-Solar EPS both in terms of deterministic scores (lower bias and better RMSE) and probabilistic scores with improved statistical consistency and overall lower CRPS.

• The benefit of the AnEn calibration is evident for both models (WRF-Solar and WRF-Solar EPS).

• The full benefit of using the WRF-Solar EPS is evident only after the AnEn calibration process, allowing better performances than the WRF-Solar AnEn in all three metrics (bias, RMSE, and correlation) for both GHI and DNI.
4.1 Results: Training period and predictors

- We tested mean and standard deviation of GHI, DNI, 2-m temperature, and total column of water vapor from WRF-Solar as predictors.
- RMSE and Bias shows the best results when mean and standard deviation of GHI and DNI are used as predictors (4P).

<table>
<thead>
<tr>
<th>1P</th>
<th>GHI_M</th>
</tr>
</thead>
<tbody>
<tr>
<td>2P</td>
<td>GHI_M, GHI_S</td>
</tr>
<tr>
<td>4P</td>
<td>GHI_M, GHI_S, DNI_M, DNI_S</td>
</tr>
<tr>
<td>4P_T</td>
<td>GHI_M, GHI_S, 2m_T_M, 2m_T_S</td>
</tr>
<tr>
<td>4P_W</td>
<td>GHI_M, GHI_S, W_M, W_S</td>
</tr>
</tbody>
</table>