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• March 2021: longest “cold, calm” spell in over a decade 

• Wind farms operated at 11% CF for 11 consecutive days

• “Biggest challenge in de-carbonising Britain’s electricity system” – BEIS

Motivation

1
GB energy mix during a wind drought in 1Q2021 - BEIS (2021)
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Background

Hydrology and wind energy analogy

Stream flow Reservoir Water demand
Hydrological 

droughts

Wind Electricity demandEnergy storageWind droughts

Hydrology

Wind Energy

Supply Demand
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• Both wind and stream flows are zero-limited, non-normally distributed, and non-stationary
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Objective 

Use insights from hydrological drought studies to quantify the risks 

associated with wind droughts in Great Britain.

1. Data

GB-aggregate wind CF modelling

2. Droughts Identification

Application of hydrological techniques to identify wind droughts 

3. Extreme Value Analysis

Estimation of wind drought return periods

3
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1. Data

1.1 Methods and validation

GB-aggregated CF time series

Conversion to power output 

Extrapolation of wind speed to hub height

Interpolation of wind speed to wind farms

Evaluation/correction - Potisomporn et al. (2023)

ERA5 10-m wind speed 1950-2021
• Capacity factor validated against actual wind 

generation data from National Grid in the 

period 2010-2021

4

Validation of GB-aggregate CF against actual 

wind output from National Grid
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Droughts definition

• Runs Analysis – Yevjevich (1975):

Uninterrupted period during which a resource

series remains below a certain threshold

• Commonly applied in wind energy

[Cannon et al. (2016), Patlakas et al.(2017),

Potisomporn & Vogel (2022)]

Issues

• Only considers constantly-below-threshold

events

• Mutually dependent droughts do not satisfy

the assumption of independence in an EVA

2. Droughts identification

2.1 Runs analysis

5

Illustration of drought events and characteristics
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2. Droughts identification

2.2 Pooling procedures

Inter-Event Time (IET)

Events separated by 𝜏 < 𝜏𝑡 are pooled

Moving Average (MA)

Apply runs analysis on a moving-average-

filtered CF time series

Sequent Peak Algorithm (SPA)

Local maxima of zero-limited cumulative

deficit series 𝑤 defines drought duration

6

Illustration of each pooling procedure
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2. Droughts identification

2.3 Pooled events

7

Duration of wind droughts plotted against severity for 

unpooled droughts and SPA-pooled droughts
Frequency-duration curve of wind droughts as 

identified by each pooling procedure
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3. Extreme value analysis

3.1 Methods

Runs analysis + Pooling procedure

GB-aggregated CF time series

Extreme value distribution fitting

Return period and uncertainty

Extreme value series extraction (AMS/PDS)

8

Return period and the 95% confidence interval for 

AMS CF0.1 by SPA – Potisomporn et al. (2023)
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3. Extreme value analysis

3.2 Revisiting March 2021 event

AMS-CF0.1 Return Period (y)

Base 100

IET 20

MA 30

SPA 3

9

March 2021 event 

“A wind drought with a duration of 11 days 

corresponding to 0.11 CF threshold”
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Conclusions

• Analogy between hydrological and wind droughts are useful

• Pooling drought events can give us new perspectives on wind droughts

• Failure to consider mutually dependent droughts can lead to an

underestimation of the risk of wind droughts

• Further details on extreme value analysis – Potisomporn et al. (2023)

10
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Thank you
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Appendices



14

Sensitivity of pooling procedures
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Distribution evaluation: L-moment ratios diagram
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Distribution evaluation: CvM test and AIC
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AMS vs PDS
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PDS sensitivity to truncation level 𝜶
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Return Period

𝑇𝐴 =
𝜆

1 − 𝐹(𝑥)

Confidence interval by bootstrapping

1. Sample (with replacement) from the

extreme value series

2. Fit the best-fit candidate distribution to

the sample

3. Calculate return period

4. Repeat 𝑛 times and obtain the 95%

confidence interval

Sequent Peak Algorithm (0.1 CF)

Figure x: Return period and the 95% confidence interval 

for AMSd CF0.1 

Return period calculations
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Return period results: CF threshold = 0.1
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Return period results: Other CF thresholds
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