



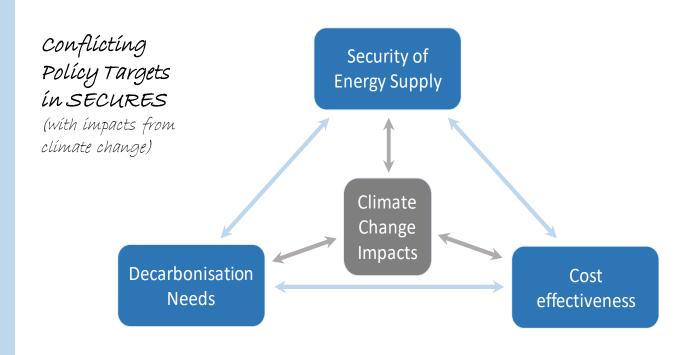


SECURING AUSTRIA'S ELECTRICITY SUPPLY IN TIMES OF CLIMATE CHANGE

# Modelling the effects of climate change on the Austrian future electricity system

icem 2023: Towards Climate-Resilient Energy Systems, 27-29 June 2023, Padova, Italy

**Demet SUNA,** Gustav RESCH, Nicolas PARDO-GARCIA, Gerhard TOTSCHNIG, Peter Widhalm **(AIT Austrian Institute of Technology)** 


Franziska SCHÖNIGER, Florian HASENGST (TU Wien, Energy Economics Group)







## **Motivation and Objectives**

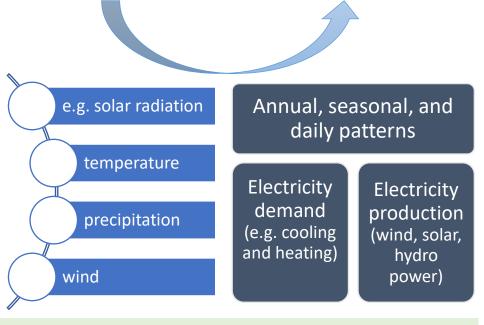


### **Objectives**

- define a suitable set of future trend scenarios for electricity sector for Austria and Europe
- conduct a comprehensive model-based scenario analysis
- assess security of supply and the related need for flexibility in consideration of national/European plans and targets








## Methodology

#### **INSIGHTS from CLIMATE MODELLING**

... feeding into ENERGY MODELLING and the ASSESSMENT of SUPPLY SECURITY

- Impact of climate change on meteorological patterns in Austria and Europe
- Analysis of the impact of changing patterns on future electricity demand & supply
- > Data processing
- ➤ Choice of pathways, years



Austria and the EU27 + CH, NO, UK: Electricity markets are largely interconnected, developments in other countries are of relevance for Austria

- Scenario design to cover different aspects of decarbonisation, climate change, and supply security of the electricity system
- Incorporation of stakeholder feedback
- More recent data & developments
- Exchange about modelling approaches how to evaluate & integrate extreme events







## Scenario-design I: Main aspects

#### Reference (REF)

- General (EU-wide): Existing measures and targets are acknowledged (according to ENTSOe-TYNDP /NECPs)
- AT: "100%" RES based electricity supply in accordance with certain assumptions (Demand: UBA-WAM-NEKP- Scenarios)
- Climate context: strong climate impacts (→ RCP 8.5)

#### **Decarbonization Needs (DN)**

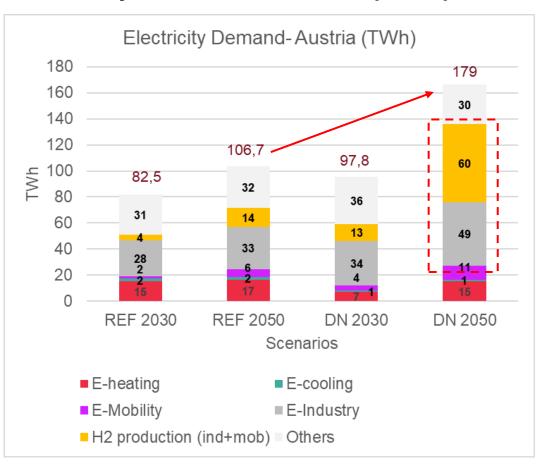
- General (EU-wide): Measures are taken for a deep decarbonisation by 2050
   → Implicit Decarbonisation of industry (NEFI-AT) and mobility → strong sector-coupling
- EU-wide (and AT): Emissions-Target → 100% Climate neutrality by 2050 (European Green Deal)
- Climate context: moderate climate impacts (→ RCP 4.5)

#### **Security of Supply (SoS)**

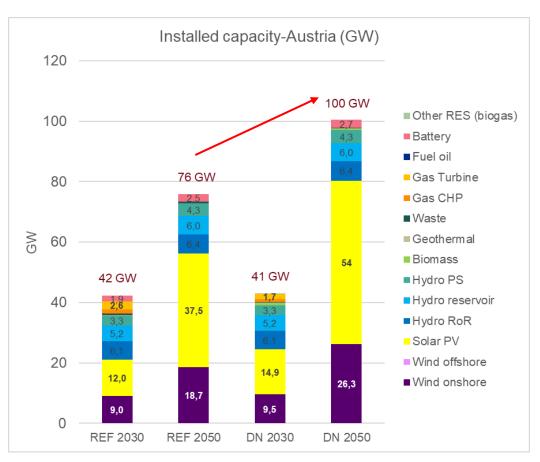
Analysing extreme weather events / years.

#### For example:

- Heat waves
- Cold periods
- Lulls (Wind, Solar, Hydro)
- Combined Effects
   (Dark Doldrums –
   dunkelflaute)

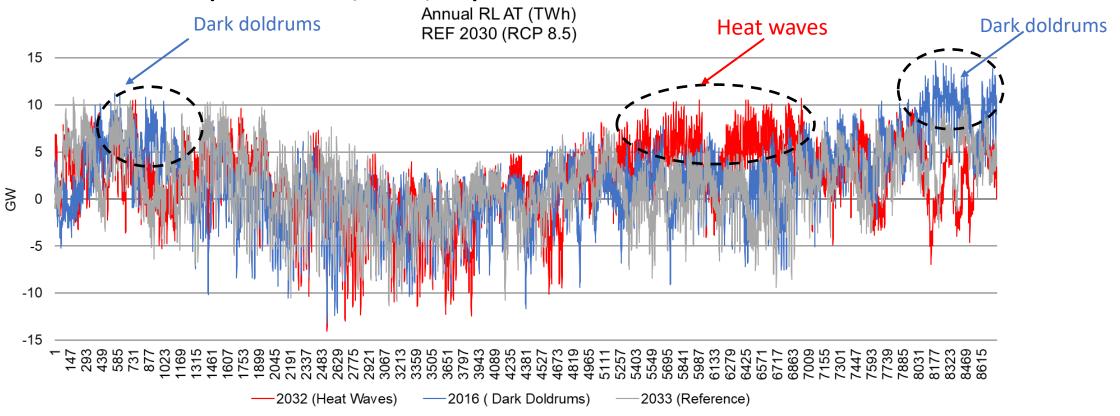





## Scenario-design II: Demand and capacity projections

### **Electricity Demand- Austria (TWh)**




### **Installed Capacity (GW)**



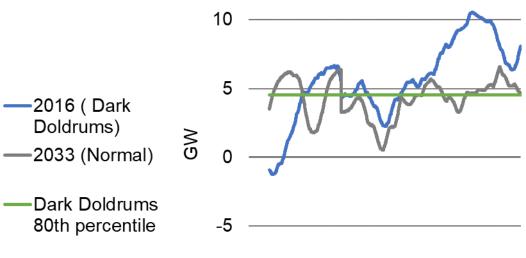
## Identification of critical system conditions

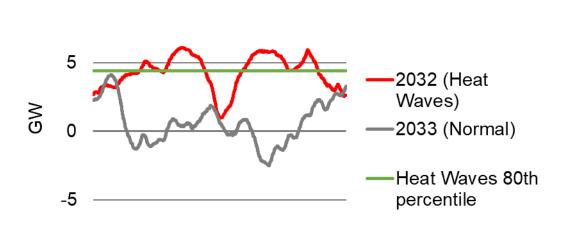
Residual load: Demand (without using demand-side flexibility options) minus production of variable renewables (run-of-river, wind, PV)

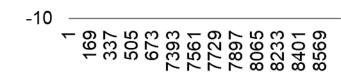


27/07/2023




## Identification of critical system conditions





**Peak Periods of Residual Load:** periods where over a time span larger than **7 days** is **above 80**<sup>th</sup> **percentile of the <u>positive RL</u>** (representative for <u>dark doldrums</u> and/or <u>heatwaves</u>)

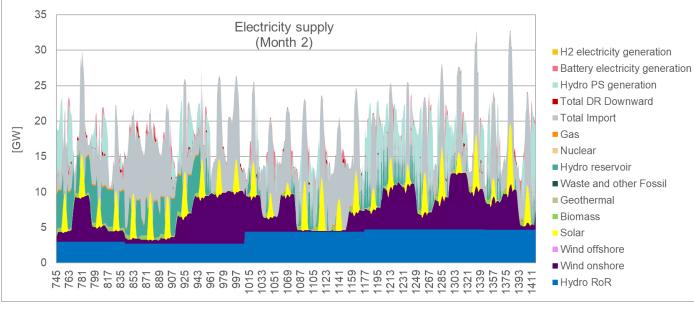
Annual RL-REF 2030 –Austria (RCP 8.5) (TWh) Weather year 2016; Months: 1, 11,12

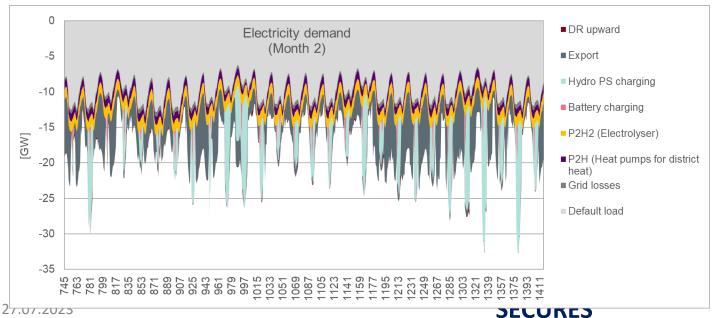
2030 –Austria (RCP 8.5)
(TWh)
(2016; Months: 1, 11,12
(RCP 8.5)
Annual RL-REF 2030-Austria (RCP 8.5)
(TWh)
(Weather year 2032; Months: 8,9,10








### Simulation results I: Generation in winter









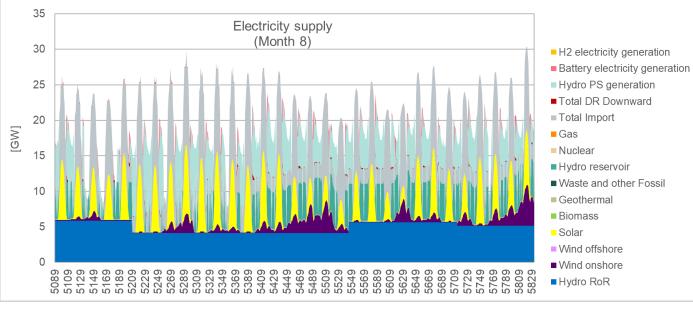
### Scenario:

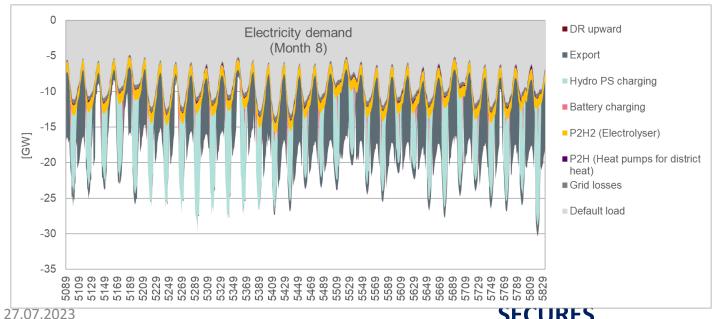
(Decarbonisation Needs) DN 2050

Normal year 2049

**Moderate Climate Impacts** 

- Electricity supply (top) &
- Electricity demand (bottom) in a typical winter month
  - Strong wind contribution
  - Moderate generation from PV
  - Slightly lower RoR in comparison to summer
  - Cross- border exchange: imports dominate




## Simulation results II: Generation in summe









#### Scenario:

(Decarbonisation Needs) DN 2050

Normal year 2049

Moderate Climate Impacts

### **Electricity supply** (top)

&

### **Electricity demand** (bottom)

### in a typical summer month

- Moderate wind contribution
- Strong generation from PV
- Slightly higher RoR in comp. to winter
- Cross border exchange: higher export than imports

27.07.2023 **SECURES** 9



## Simulation Results III: Comparing key assets of the Austrian power system by 2050 in case of DN 2050



#### Normal year | Moderate Climate Impacts

| Normal year                       | ioaciat |                                    |                           |                       |              |
|-----------------------------------|---------|------------------------------------|---------------------------|-----------------------|--------------|
|                                   | Planned | Endogenous<br>expansion<br>(beyond | Total stock<br>(planned & | Yearly<br>electricity |              |
| Energy system assets              | stock   | planned)                           | expansion)                | generation            |              |
| Electricity supply (incl. CHP)    | GW      | GW                                 | GW                        | TWh                   |              |
| Wind onshore                      | 26.3    | 0.0                                | 26.3                      | 65.8                  |              |
| Wind offshore                     | 0.0     | 0.0                                | 0.0                       | 0.0                   |              |
| Solar                             | 54.0    | 0.0                                | 54.0                      | 61.1                  |              |
| Hydro RoR                         | 6.4     | 0.0                                | 6.4                       | 39.6                  |              |
| Biomass                           | 0.4     | 0.0                                | 0.4                       | 0.2                   |              |
| Geothermal                        | 0.1     | 0.0                                | 0.1                       | 0.9                   |              |
| Waste                             | 0.2     | 0.0                                | 0.2                       | 0.0                   |              |
| Hydro reservoir                   | 6.0     | 0.0                                | 6.0                       | 13.0                  |              |
| Nuclear                           | 0.0     | 0.0                                | 0.0                       | 0.0                   |              |
| Gas                               | 0.0     | 4.7                                | 4.7                       | 0.7                   |              |
| Heat/Steam supply                 | GW      | GW                                 | GW                        |                       |              |
| Biomass                           | 2.4     | 0.0                                | 2.4                       |                       |              |
| Geothermal                        | 0.0     | 0.0                                | 0.0                       |                       |              |
| Heat pumps (for district heating) | 1.8     | 0.0                                | 1.8                       |                       |              |
| Storage & selected flexibility    |         |                                    |                           | TWh                   | TWh (asse    |
| components                        | GW      | GW                                 | GW                        | (storage size)        | use per year |
| Batteries                         | 2.7     | 8.7                                | 11.5                      | 0.04                  | 10.2         |
| Hydro pumped storage              | 4.3     | 0.0                                | 4.3                       | 0.95                  | 9.5          |
| Thermal storage                   | 0.0     | 0.2                                | 0.2                       | 0.03                  | 0.4          |
| H2 storage                        | 0.0     | 1.8                                | 1.8                       | 9.15                  | 2.4          |
| H2 electrolyser                   | 0.0     | 7.1                                | 7.1                       |                       | 57.7         |
| H2 relectrification               | 0.0     | 0.0                                | 0.0                       |                       | 0.0          |

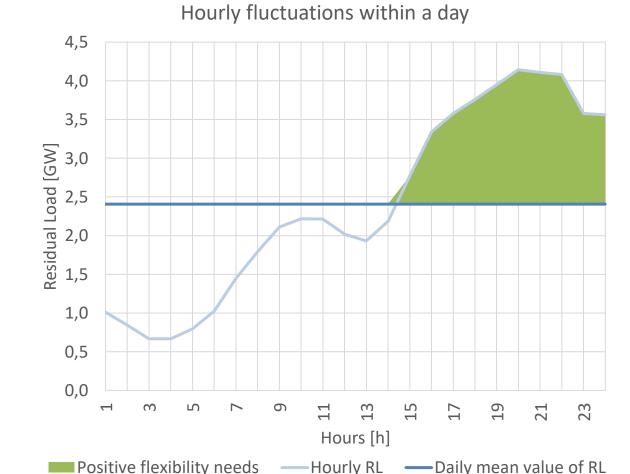
| Heat \ | $\Lambda/2$ |
|--------|-------------|
| пеагу  | vvave       |
| II Cat |             |

#### **Moderate Climate Impacts**

|                                   |         | Endogenous |             |                |               |
|-----------------------------------|---------|------------|-------------|----------------|---------------|
|                                   |         | expansion  | Total stock | Yearly         |               |
|                                   | Planned | (beyond    | (planned &  | electricity    |               |
| Energy system assets              | stock   | planned)   | expansion)  | generation     |               |
| Electricity supply (incl. CHP)    | GW      | GW         | GW          | TWh            |               |
| Wind onshore                      | 26.3    | 5.3        | 31.6        | 68.2           |               |
| Wind offshore                     | 0.0     | 0.0        | 0.0         | 0.0            |               |
| Solar                             | 54.0    | 8.4        | 62.4        | 76.1           |               |
| Hydro RoR                         | 6.4     | 0.0        | 6.4         | 31.5           |               |
| Biomass                           | 0.4     | 0.0        | 0.4         | 1.5            |               |
| Geothermal                        | 0.1     | 0.0        | 0.1         | 1.0            |               |
| Waste                             | 0.2     | 0.0        | 0.2         | 0.0            |               |
| Hydro reservoir                   | 6.0     | 0.0        | 6.0         | ( 8.9          | •             |
| Nuclear                           | 0.0     | 0.0        | 0.0         | 0.0            |               |
| Gas                               | 0.0     | 0.0        | 0.0         | 0.0            |               |
| Heat/Steam supply                 | GW      | GW         | GW          |                |               |
| Biomass                           | 2.4     | 0.0        | 2.4         |                |               |
| Geothermal                        | 0.0     | 0.0        | 0.0         |                |               |
| Heat pumps (for district heating) | 1.8     | 0.0        | 1.8         |                |               |
| Storage & selected flexibility    |         |            |             | TWh            | TWh (asset    |
| components                        | GW      | GW         | GW          | (storage size) | use per year) |
| Batteries                         | 2.7     | 15.9       | 18.7        | 0.07           | 18.9          |
| Hydro pumped storage              | 4.3     | 0.0        | 4.3         | 0.95           | 11.6          |
| Thermal storage                   | 0.0     | 0.6        | 0.6         | 0.09           | 0.8           |
| H2 storage                        | 0.0     | 3.2        |             | 15.94          | 15.9          |
| H2 electrolyser                   | 0.0     | 16.1       | 16.1        |                | 76.3          |
| H2 relectrification               | 0.0     | 0.0        | 0.0         |                | 0.0           |



## Flexibility needs I: Approach






→ Indicators used in detail: Analysis on security of supply and of Flexibility Needs

- Residual load: Demand subtracted by weather-dependent RES supply
- 2. Demand for flexibility:
  - Residual load, aggregated (average per year)
  - Analysis of fluctuations of residual load

per time period (hourly, daily, weekly, seasonal)



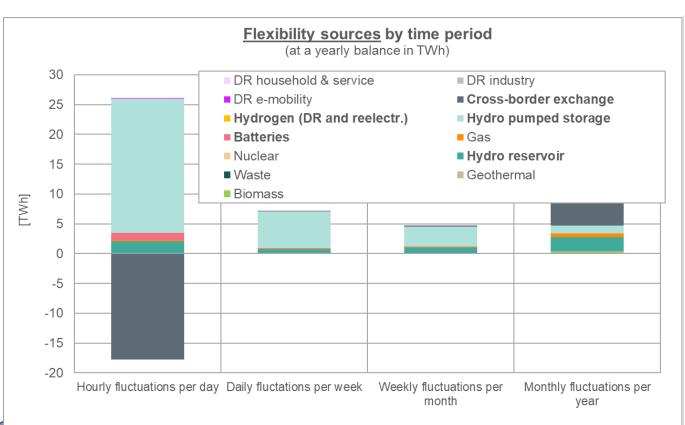
<u>Daily flexibility needs</u>: Hourly fluctuations in comparison to daily average

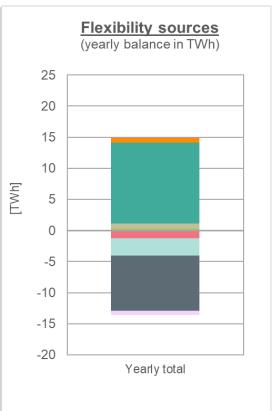


### Flexibility needs II:

Contribution of flexibility options to meet flexibility needs: at different time periods & at an annual balance







#### Scenario:

(Decarbonisation Needs) DN 2050

Normal year Weather year: 2049

Moderate Climate Impacts





- Cross-border
   exchange increases
   short term
   flexibility demand
   in Austria
- Hydro pumpstorage is an important flexibility option during all time periods

Austria

**SECURES** 

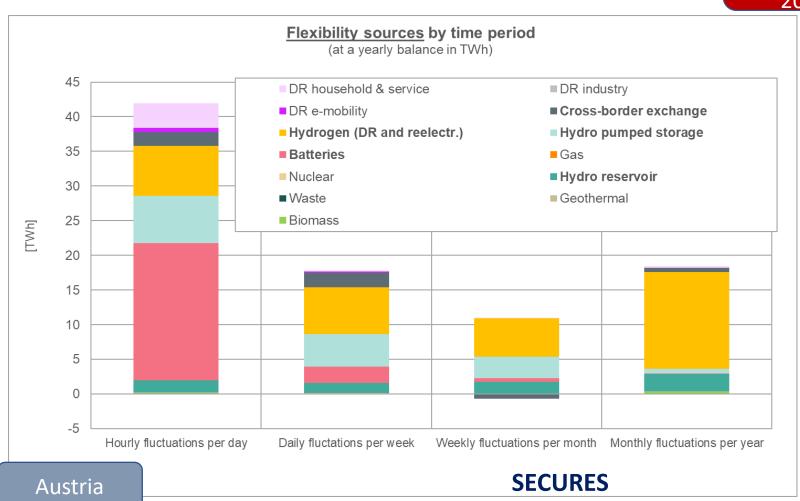
12

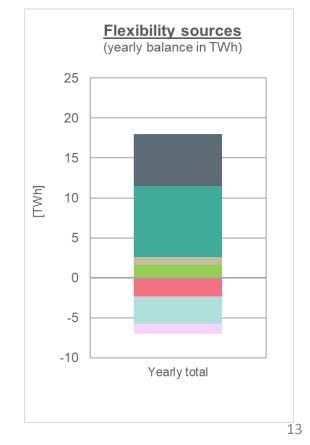


### Flexibility needs II:

Contribution of flexibility options to meet flexibility needs: at different time periods & at an annual balance







Scenario:

(Decarbonisation Needs) DN 2050

**Heat Wave** (weather year 2057)

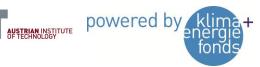
**Moderate Climate Impacts** 












## Conclusions

- The moderate impact of climate change on demand (and generation) can be offset in a "normal" year mainly by the planned/assumed change in the generation technologies in Austria, however it needs additional capacities in flexibility options (mainly batteries and hydrogen electrolysers)
- **Hydro pump storage and cross-border exchange** are currently main flexibility options and will also be important in the future.
- Heat Wave scenario demonstrates most critical system scenario (wind and water lulls) in a decarbonized power system by 2050; needs additional generation capacities (PV and wind) and flexibility options for a system friendly operation.







## Open-access data sets

The **climate data** and **energy system data sets** (hourly resolution, 1981-2100) will be made openly available in the course of the SECURES project.

Variables include temperature, radiation, wind power, and hydropower; aggregated to NUTS3 (Austria only), NUTS2, NUTS0 and EEZ (wind offshore)

Check for updates here: https://www.secures.at/news

27.07.2023









## 1<sup>st</sup> dataset: SECURES-Met

Paper: Herbert Formayer, Imran Nadeem, David Leidinger, Philipp Maier, Franziska Schöniger, Demet Suna, Gustav Resch, Gerhard Totschnig & Fabian Lehner (2023). **SECURES-Met: A European meteorological data set suitable for electricity modelling applications.** Under review: Nature Scientific Data.

Herbert Formayer, Philipp Maier, Imran Nadeem, David Leidinger, Fabian Lehner, Franziska Schöniger, Gustav Resch, Demet Suna, Peter Widhalm, Nicolas Pardo-Garcia, Florian Hasengst, & Gerhard Totschnig. (2023). SECURES-Met - A European wide meteorological data set suitable for electricity modelling (supply and demand) for historical climate and climate change projections (1.0.0) [Data set]. Die Zukunft der Energiemärkte in Europa vor dem Hintergrund neuer geopolitischer Ungleichgewichte (IEWT 2023), Vienna, Austria. Zenodo. <a href="https://doi.org/10.5281/zenodo.7907883">https://doi.org/10.5281/zenodo.7907883</a>



| Variable                 | Short name                                                              | Unit         | Aggregation methods                                                                      | Temporal resolution |  |
|--------------------------|-------------------------------------------------------------------------|--------------|------------------------------------------------------------------------------------------|---------------------|--|
| Temperature<br>(2m)      | T2M                                                                     | °C           | spatial mean<br>population weighted mean<br>(recommended)                                | hourly              |  |
| Radiation                | GLO (mean<br>global radiation)<br>BNI (direct<br>normal<br>irradiation) | Wm-2<br>Wm-2 | spatial mean<br>population weighted mean<br>(recommended)                                | hourly              |  |
| Potential Wind<br>Power  | WP                                                                      | 1            | normalized with potentially available area                                               | hourly              |  |
| Hydro Power<br>Potential | HYD-RES<br>(reservoir)<br>HYD-ROR (run-<br>of-river)                    | MW<br>1      | summed power production summed power production normalized with average daily production | daily               |  |



27.07.2023







SECURING AUSTRIA'S ELECTRICITY SUPPLY IN TIMES OF CLIMATE CHANGE

### **Demet Suna**

demet.suna@ait.ac.at T+43 50550-6420 www.ait.ac.at

More information about project SECURES: www.secures.at



# SECURES

### Comparing key assets of the Austrian power system by 2050



Scenario:

(Decarbonisation Needs) DN 2050

Normal year

**Moderate Climate Impacts** 

| ,                                 |         |            |             |                |              |
|-----------------------------------|---------|------------|-------------|----------------|--------------|
|                                   |         | Endogenous |             |                |              |
|                                   |         | expansion  | Total stock | Yearly         |              |
|                                   | Planned | (beyond    | (planned &  | electricity    |              |
| Energy system assets              | stock   | planned)   | expansion)  | generation     |              |
| Electricity supply (incl. CHP)    | GW      | GW         | GW          | TWh            |              |
| Wind onshore                      | 26.3    | 0.0        | 26.3        | 65.8           |              |
| Wind offshore                     | 0.0     | 0.0        | 0.0         | 0.0            |              |
| Solar                             | 54.0    | 0.0        | 54.0        | 61.1           |              |
| Hydro RoR                         | 6.4     | 0.0        | 6.4         | 39.6           |              |
| Biomass                           | 0.4     | 0.0        | 0.4         | 0.2            |              |
| Geothermal                        | 0.1     | 0.0        | 0.1         | 0.9            |              |
| Waste                             | 0.2     | 0.0        | 0.2         | 0.0            |              |
| Hydro reservoir                   | 6.0     | 0.0        | 6.0         | 13.0           |              |
| Nuclear                           | 0.0     | 0.0        | 0.0         | 0.0            |              |
| Gas                               | 0.0     | 4.7        | 4.7         | 0.7            |              |
| Heat/Steam supply                 | GW      | GW         | GW          |                |              |
| Biomass                           | 2.4     | 0.0        | 2.4         |                |              |
| Geothermal                        | 0.0     | 0.0        | 0.0         |                |              |
| Heat pumps (for district heating) | 1.8     | 0.0        | 1.8         |                |              |
| Storage & selected flexibility    |         | -          | -           | TWh            | TWh (asse    |
| components                        | GW      | GW         | GW          | (storage size) | use per year |
| Batteries                         | 2.7     | 8.7        | 11.5        | 0.04           | 10.2         |
| Hydro pumped storage              | 4.3     | 0.0        | 4.3         | 0.95           | 9.5          |
| Thermal storage                   | 0.0     | 0.2        | 0.2         | 0.03           | 0.4          |
| H2 storage                        | 0.0     | 1.8        | 1.8         | 9.15           | 2.4          |
| H2 electrolyser                   | 0.0     | 7.1        | 7.1         |                | 57.7         |
| H2 relectrification               | 0.0     | 0.0        | 0.0         |                | 0.0          |
|                                   |         |            |             | -              |              |

Scenario:

Decarbonisation Needs) DN 2050

Austria

### Dark Doldrums

#### **Moderate Climate Impacts**

| Doldrums                          | Diamand          | Endogenou<br>s expansion | Total stock           | Yearly                    |
|-----------------------------------|------------------|--------------------------|-----------------------|---------------------------|
| Energy system assets              | Planned<br>stock | (beyond<br>planned)      | (planned & expansion) | electricity<br>generation |
| Electricity supply (incl. CHP)    | GW               | GW                       | GW                    | TWh                       |
| Wind onshore                      | 26,3             | 5,3                      | 31,6                  | 66,4                      |
| Wind offshore                     | 0,0              | 0,0                      | 0,0                   | 0,0                       |
| Solar                             | 54,0             | 8,4                      | 62,4                  | 72,7                      |
| Hydro RoR                         | 6,5              | 0,0                      | 6,5                   | 32,8                      |
| Biomass                           | 0,4              | 0,0                      | 0,4                   | 1,6                       |
| Geothermal                        | 0,1              | 0,0                      | 0,1                   | 1,0                       |
| Waste                             | 0,2              | 0,0                      | 0,2                   | 0,0                       |
| Hydro reservoir                   | 6,0              | 0,0                      | 6,0                   | 9,1                       |
| Nuclear                           | 0,0              | 0,0                      | 0,0                   | 0,0                       |
| Gas                               | 0,0              | 0,0                      | 0,0                   | 0,0                       |
| Heat/Steam supply                 | GW               | GW                       | GW                    |                           |
| Biomass                           | 2,4              | 0,0                      | 2,4                   |                           |
| Geothermal                        | 0,0              | 0,0                      | 0,0                   |                           |
| Waste                             | 0,0              | 0,0                      | 0,0                   |                           |
| Heat pumps (for district heating) | 1,8              | 0,0                      | 1,8                   |                           |

| Storage & selected flexibility |     |      | T    | Wh (storage | TWh (asset    |
|--------------------------------|-----|------|------|-------------|---------------|
| components                     | GW  | GW   | GW   | size)       | use per year) |
| Batteries                      | 2,7 | 7,4  | 10,2 | 0,037       | 10,0          |
| Hydro pumped storage           | 4,3 | 0,0  | 4,3  | 0,949       | 10,5          |
| Thermal storage                | 0,0 | 0,5  | 0,5  | 0,074       | 0,9           |
| H2 storage                     | 0,0 | 4,0  | 4,0  | 20,112      | 15,5          |
| H2 electrolyser                | 0,0 | 16,0 | 16,0 |             | 76,1          |
| H2 relectrification            | 0,0 | 0,0  | 0,0  |             | 0,0           |