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Africa energy outlook 2022 (International Energy Agency)

» Solar mini-grids (MG), a promising solution to electrify at low cost and with low emissions ?
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For each configuration :

= Levelized Cost of Energy (LCOE)

= Carbon Footprint (CFP)

CFP = KPV“PV + Kbat“bat + ngnagen + Fuelconsoafuel

Supplied energy
And similar for the LCOE 7
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These curves depends on a lot of factors :

Costs

CFP of components
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Demand profile
Solar resource

Fuel cost [$/L PV cost [$/k
0.7 " -[ ] " 0.7 " L “ﬂ "
—0950
_ —1900
06} . 1 0.6 ——2850 |]
=
E 0.5}
£,
w !
C)0.4
O
-

o
w

0.2t - - - 0.2 b - - -
200 400 600 800 200 400 600 800
CFP[g /KWh] CFP[g /KWh]
CO,,.eq CO, eq

12

Internal



Latitude [°N]
(=)

GHI [W/m 2]

LCOE [$/kWh]

Longitude [°E]

0.55

0.35 ¢

» For this presentation, focus on the effect of the solar resource
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0,34$/kWh < LCOE* < 0,45$/kWh
18OgC02,eq/kWh < CFP*< SOOgCOZ,eq/kWh

Same geographical pattern for the LCOE*
and CFP* values
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0,34$/kWh < LCOE* < 0,45$/kWh
18OgC02,eq/kWh < CFP*< 300gc02,eq/kWh

Same geographical pattern for the LCOE*
and CFP* values

Renewable fraction :

LCOE* between 50% and 80%
CFP* higher than 95%
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» LCOE* and CFP * values highly depends on the mean capacity factor

LCOE* [$/kWh] CFP* [g cozIkWh]
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The variability of the resource has also an impact, especially on the CFP* values
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» The characteristics of the solar resource also influence the distance between LCOE* and CFP* values
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» The characteristics of the solar resource also influence the distance between LCOE* and CFP* values
» Going from the LCOE* to the CFP* configuration requires a relatively high cost increase ...

19



LCOE

CFP*

LCOE*

CFP

20



LCOE

CFP*

LCOE*

CFP

Lat [°N]

40

20t

O o o ° °
Qo e® o » °
a» . @ ™
o@ Y )
eI o e»
m .-.... LCOE increase
oW o @moo . 5%
GDEGIDO » 800 - 00
e Yol BY T Y X e 10%
@ee > @ o® . 15Y%
coe@» oo Y 0
oY ¢ DT ) o e 20%
GG D0 ° XX o M
Q@ » o oo o ax
O G e o e o0
e ®@e YY)
O Om>» 0@ © oo o
O @ 000 o0 oo
-50 -40 -30 -20

Relative change of CFP [%]

But significant CFP reduction can be obtained with moderate additional costs !
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Add a virtual surcharge to the price of carbon
emissive projects :

PTO]eCt COSLS with emissions
= Project costs yithout emissions

+ Carbon emissions * SPC

SPC : Shadow price of carbon
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Add a virtual surcharge to the price of carbon
emissive projects :
Project COSLS with emissions
= Project costs yithout emissions

+ Carbon emissions * SPC

SPC : Shadow price of carbon

Sources: EBRD (2014), World Bank (2015), HLCCP (2017), EIB (2015), ASDB (2017),
All'in 2016 prices, adjusted for inflation and EBRD and EIB prices have been converted
from EUR to USD using OECD conversion rates.
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Carbon prices used by development banks compared to
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http://www.ebrd.com/downloads/policies/sector/coal-methodology.pdf
http://documents.worldbank.org/curated/en/267971468000014869/pdf/99506-WP-v2-PUBLIC-Box393204B-Guidelines-Economic-Analysis-Power-Projects-Volume-2-Final.pdf
https://static1.squarespace.com/static/54ff9c5ce4b0a53decccfb4c/t/59b7f2409f8dce5316811916/1505227332748/CarbonPricing_FullReport.pdf
http://www.eib.org/attachments/strategies/eib_climate_strategy_en.pdf
https://www.adb.org/sites/default/files/institutional-document/32256/economic-analysis-projects.pdf
https://data.oecd.org/conversion/exchange-rates.htm

Add a virtual surcharge to the price of carbon
emissive projects :

LCOEwith emissions — LCOEwithout emissions + CFP « SPC

SPC : Shadow price of carbon
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emissive projects : - LS.
30 B - e @ - [
20 -
10 + co® e o o0 @0 @ o
LCOEwith emissions — LCOEwithout emissions T CFP * SPC OE' ol o o oo enomee - .
= SPC PR et
| oo o o o0 ® e oo
-101 [$lt Coz,eq] oo o0 ® o0 o e o
20 e 60 o. .: : ° .: o: :o :o :
SPC * Sh d i f b ‘ 120 .o.o. ° .o.o ° ;.o : °
: adow price o1 caroon 30 + « 170 - e @ e
e 290
-40 ' ' '
-60 -40 -20 0

The IPCC (AR6 WG llI) estimated the following value for
2030 to limit global warming to :

- 1.5°C between 60 and 120 $/t¢¢, eq
* 2°Cbetween 170 and 290 $/t¢o, eq
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» Many mini-grids currently installed are running on
diesel
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» Many mini-grids currently installed are running on
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» Many mini-grids currently installed are running on
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» Many mini-grids currently installed are running on
diesel

» Integrating solar energy and batteries would allow to
reduce by 45 to 70% the CFP and 5 to 25% the LCOE

» Reduce the CFP of MG to its lowest values (around
20090, ,eq/kWh) is possible but can strongly increase
the LCOE

» But many compromises exist between the optimums
and allow to significantly reduce the CFP with
moderate additional costs
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Thanks for your attention !

Contact : theo.chamarande@univ-grenoble-alpes.fr
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