

Here comes the Sun on strawberry fields

the agrivoltaics project REGACE

This project has received funding from the European Commission's Horizon Europe Coordination and Support Actions programme under grant agreement No 101096056The European Commission is not responsible for any use that may be made of the information it contains. Cristina Cornaro, A. Volterrani, M. Petitta, G. Bovesecchi, M.C. Antonucci cornaro@uniroma2.it

Agri-Photovoltaics (Agri-PV, APV, Agrivoltaic) consists of the simultaneous use of areas of land for both solar photovoltaic power generation and agriculture. Its multi-use of land has the potential to make a major contribution to achieving the targets set in the 2022 Repower EU program (almost 600 GW PV @2030).

1 % of Utilised Agricultural Area (UAA)

UAA = 158 million hectares at EU level

Source (JRC, Overview of the Potential and Challenges for Agri-Photovoltaics in the European Union 2023)

1% of Utilised Agricultural Area (UAA)

3XIT installed capacity @2022

100 km

UAA = 12,5 million hectares at ITALY level

Legend Utilized Agricultural Area (2020) Hectares > 1.280.000 655,000-1,280,000 460,000-654,000 281,000-459,000 44,000-280,000

Labianca, 2023. Proposal of a Method for Identifying Socio-Economic Spatial Concentrations for the Development of Rural Areas: An Application to the Apulia Region (Southern Italy), Sustainability, 15 (4).

APV in Italy (2022)

- 42,000 APV sites
- 2,600 MW Installed APV capacity
- 3,000 GWh Gross Production

Greenhouse potential in Italy (2022)

- **40,000** hectares of greenhouses
- 24 GW of potential PV capacity
- 28.8 TWh Gross Production

Responsive tracking system in the greenhouse driven by a **PLC controller** that changes the tracking angle according to the plants' needs. A system using CO₂ enrichment increases crop production in low light conditions optimizing electricity production of the **bifacial panels** in the tracking system.

- Lightweight and easy to mount system
- **Dual use** of land and dual use of infrastructure
- Low visual impact
- € 600/kW compared to €880/kW for ground-based PV fields

Low light conditions: PV modules at 90° angle of incidence

Cooling system: heat pump

CO2 enrichment: CO2 tan

Cooling System: CO2 enrichment:

Cooling: No

CO2 enrichment: CO2 tank (GH 3)

ENERGIA SOLARE TEST E RICERCA LABORATORI DI FISICA TECNICA AMBIENTALE UNIVERSITÀ DEGLI STUDI DI ROMA 'TOR VERGATA'

EGACE Bifacial PV performance Using Co2 for Green Energy 85

85W-135W	85W-135W	85W-135W	85W-135W
Trisolar Bi-Facial Solar module	Trisolar Bi-Facial Solar module	Trisolar Bi-Facial Solar modul	Trisolar Bi-Facial Solar module
Electrical Characteristics(STC)	Electrical Characteristics(STC)	Electrical Characteristics(STC)	Electrical Characteristics(STC)
Module Type: LWMH32-85-G1	Module Type: LWMH32-105-G1	Module Type: LWMH32-135-G1	Module Type: LWMH32-90-G1
Maximum Power:Pmax: 85	Maximum Power:Pmax: 105	Maximum Power:Pmax: 135	Maximum Power:Pmax: 90
Open Circuit Voltage:Voc: 20V	Open Circuit Voltage:Voc: 25V	Open Circuit Voltage:Voc: 37.17V	Open Circuit Voltage:Voc: 24.78V
Short Circuit Current:Isc: 4.25A	Short Circuit Current:Isc: 4.2A	Short Circuit Current:Isc: 4.71A	Short Circuit Current:Isc: 4.71A
Voltage at Maximum Power:Vmp: 23.6V	Voltage at Maximum Power:Vmp: 29.5V	Voltage at Maximum Power:Vmp: 31.5V	Voltage at Maximum Power:Vmp: 21V
Current at Maximum Power:Imp: 4.68A	Current at Maximum Power:Imp: 4.62A	Current at Maximum Power:Imp: 4.29A	Current at Maximum Power:Imp: 4.29A
Cell Size:105*105MM	Cell Size:105*105MM	Cell Size:105*105MM	Cell Size:182*60.7MM
Cell Efficiency: 22.5%	Cell Efficiency: 22.5%	Cell Efficiency: 22.5%	Cell Efficiency: 22.5%
Module Efficiency: 21%	Module Efficiency: 21%	Module Efficiency: 21%	Module Efficiency: 21%
STC Test Conditions :	STC Test Conditions :	STC Test Conditions :	STC Test Conditions :
Irradiance 1000W/m²,	Irradiance 1000W/m,	Irradiance 1000W/m,	Irradiance 1000W/m,
Cell Temperature 25°C, AM=1.5,	Cell Temperature 25°C, AM=1.5,	Cell Temperature 25°C, AM=1.5,	Cell Temperature 25°C, AM=1.5,
Test Uncertainty: ±3%	12 year Narranty for Material and Processing	Test Uncertainty: ±3%	Test Uncertainty: ±3%
30 year Power output	30 year Power output	30 year Power output	30 year Power output
58.6			400 379
	1450		5 n

BIFACIALITY COEFFICIENTS

a) $\varphi I_{SC,r} = \frac{I_{SC,r}}{I_{SC,f}}$ b) $\varphi V_{OC} = \frac{V_{OC,r}}{V_{OC,f}}$ c) $\varphi P_{max} = \frac{P_{max,r}}{P_{max,f}}$

Task 13 Performance, Operation and Reliability of Photovoltaic Systems – Bifacial PV Modules and Systems Report IEA-PVPS T13-14:2021

Bifacial Standard Test Condition (BSTC) ^[1] $G_f = 1000 W/m^2$

 $G_r = 135 W/m^2$ $G_E = 1000 + \varphi * 135 W/m^2$

Field parameter	Bifacial reference conditions	
Albedo	0.21 (light soil)	
Height above ground	1 m	
Inclination angle	37°	
Front side irradiance	1000 W/m ²	

Herrmann, Werner., Markus Schweiger, and Johanna Bonilla. "Performance characteristics of bifacial PV modules and power labeling." Presented at the 4th Bifi PV Workshop, Konstanz, Germany (2017).

IEC TS 60904-1-2 Measurement of Current-Voltage characteristics of Bifacial Photovoltaic (PV) Devices

performance at various locations, CO₂ enrichment efficiency

Why using participatory research in sustaining AgriPV

Participatory techniques

The REGACE Spring School

WHERE Farm Research Project Partner, "Circeo Social Farm" (LT)

WHEN MAY 2-5, 2023

FACTS

The school welcomed 8 participants from 5 different countries involved in REGACE Projects. 6 participatory techniques were presented by 5 trainers specializing in social research unity including

- Icebreaking
- In-depth interviews
- Focus groups
- Sentiment Analysis
- World Café

Here comes the Sun on strawberry fields!

Source (Agrisolar, best practice and guidelines, SolarPowerEurope 2023)

Cristina Cornaro

cornaro@uniroma2.it

University of Rome, Tor Vergata, Italy

ICEM, Padova 27 June 2023

This project has received funding from the European Commission's Horizon Europe Coordination and Support Actions programme under grant agreement No 101096056The European Commission is not responsible for any use that may be made of the information it contains.

