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Power systems and meteorology < Reading

* Many impacts of weather on power (damage, demand, transmission, supply)
* Use of renewables: Increasing sensitivity to weather on generation side
* Climate change and variability: effects weather properties

Operational . Day to day operations (e.g., grid management, plant sched)
(seconds —few days) . Anticipating extreme weather
_ . Longer-term energy trading
Tactical . Maintenance planning
(days — 1 year) . Medium term resource planning

. Characterising demand/supply
. Impacts of climate change
. Design of power systems and markets

Strategic

(long term climate)

Extremes - Risk and impact of extreme disruptive weather

(disrupting weather) . Local and far-field

* Key challenge: how to use weather climate data effectively to understand behaviour of
impacted system and develop risk management strategies

* Today: examples from operational, strategic and tactical
* Power-, Euro-, Renewables- centric (please ask for other areas!) 2



' Unlver5|ty of
< Reading

* Topic 1 — climatologies of risk: understanding range of the possible (blue 2 red)

Reanalysis
Climate model projections (GCMs)

* Topic 2 — forecasting risk: anticipating outcomes (red = green)

* Ensemble prediction (subseasonal, seasonal and decadal)
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Climatologies of risk & Reading

* Wind-power variability
* Reserve holding, system planning, system management
* Risks: persistent-high, persistent-low and rapid ramps in wind power

* Question 1: To what extent can historical meteorological data better characterize
these three risks? (now and into the future)

* Climate impacts on “integrated” power systems
* Load duration and operating opportunity for conventional plant

* Question 2: Are economic “system planning” models robust to climate change
and variability?



Wind power climatologies G e

(Cannon et al, 2015; Drew et al 2015; Canon et al, submitted) Reading

 Special thanks to: Dirk Cannon & Dan Drew (postdocs), John Methven & Phil Coker
(UoReading), and David Lenaghan (National Grid)

* Insufficient direct power observation records (few years)

* Previous work largely based on met-station data (Sinden, Leahy, Earl, Fruh, ...)
* Spatially sparse, inhomogenous (spatial, temporal)
* Wrong height (10m), wrong location (relative to wind farms)
* = Conversion to “power” problematic

* Reanalysis
* Full, gridded, 30+ years of homogenous coverage
* Multiple vertical heights
* Freely available, no need for additional simulations
* NASA MERRA (Reinecker et al 2011); similar with ERA-Interim (Dee et al, 2011)
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Wind evaluation

* MERRA comparison to 328 MIDAS 10m wind-mast observations
* High altitude sites: likely underestimation of topographic height

' Unlver5|ty of
< Reading

* National average: performs well - compensation of uncorrelated small-scale “errors”

Reanalysis estimate

Absolute wind speed (10m, hourly)
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Wind evaluation & Reading

* MERRA comparison to 328 MIDAS 10m wind-mast observations
* High altitude sites: likely underestimation of topographic height
* National average: performs well - compensation of uncorrelated small-scale “errors”
* National 3-6 hour “deltas” reproduced well

3-hour change in wind speed (10m, hourly)
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Aside: The limits of reanalysis & Reading

GB wind strongly spatially correlated, decreasing with distance ~100’s km (Sinden, 2007)
Question: how well does MERRA capture differences between sites?

(a) Correlation (38U, 8V)
MIDAS U;, MERRAV, 1 . ;
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Correlation ~0.6 @ 300 km

Interpretation:

* dU contains contribution from “local situation” and “large-scale weather”

« MERRA captures the contribution from “large-scale” but “local” is unresolved
» Effective resolution on scale ~ 300km

Cannon et al (2015)



Conversion to wind power % Reading

* Interpolate hourly wind-speed to each site in 2012 wind-farm list (2, 10, 50m)
* Extrapolate to turbine height using a fitted logarithmic profile

* Applying simple power curve to estimate capacity factor

* Weight by local installed capacity and aggregate nationally

* Calibrate power curve using observed 2012 wind-power records

(a) September 2012 wind farm distribution
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Cannon et al (2015) 10



[#»a] University of

Wind power — 2012 period <> Reading
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Wind power synthetic record 3] University of

< Reading

(Cannon et al, 2015, Renewable Energy)

30+ year “synthetic history” of wind power
* Model code and data freely available: www.met.reading.ac.uk/~energymet

Key points:

* Better quantification of risks associated with inter-annual climate variability

* Annual-mean capacity factor higher than previous estimates (32.5%) and highly variable (15pp range)
* Persistent high/low wind events approximately Poisson-like (exponential decay with persistence)

* Very large ramps can occur — but caution required
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Future wind power installation 5] Universt of

(Drew et al, 2015, Resources) » Reading

* “What if” scenarios: characteristics of future power systems
* ldentify contributions from offshore/onshore

Red = “future”
 Blue = present
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Future wind power installation i ol

(Drew et al, 2015, Resources)

Rea ing

* Fewer persistent low CF events = much fewer in terms of GW output

* More persistent high CF events = much more in terms of GW output

* Ramps same size in CF terms = larger ramp in GW
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Integrated power systems ety

(mainly work by Hannah Bloomfield, PhD student) REIE

* Integration of renewables: more sensitive to weather
* ... but climate impact work usually considers “ingredients”, not power “systems”

* Perspective: two particular “classes” of problem

Short run Long run
Operation of a “fixed” power system Design of “best” power system
E.g., unit commitment, power flow, loss of E.g., capacity mix, policy choices,
load probability economic optimality

Both challenging, both important, both focus of much energy-system research

Highly complex, often drawing on numerical simulation (typically optimisation-based)

* However, many influential studies use short weather/climate records, e.g. (for long-run):

* Grunewald 2011; Poyry 2009; Green 2010; Gerber 2012; Widen 2011; Buttler 2016;
Schaber 2013; Macdonald (in press); EWITS, WWSIS

15

Question: How robust are the results to climate variability and change?



Integrated power systems ety

Rea ing

(mainly work by Hannah Bloomfield, PhD student)

* Simplified approach, based on “merit-order” principles

* Enables approximation of economic decision-making in power sector

* Intention to explore how climate information can/should be used...

* ... not to replace “more complex” power models, or to produce precise predictions

Cost Long run Bid 4 1 Short run
Price Demand

Supply

' > >
7% 91%  Duration (h/yr) Volume
Peaking Low High OCGT, oll See, e.g., Stoft (2002)
Mid-merit Medium Medium CCGT, coal 7% and 91% thresholds

based on DECC 2013 16

Baseload High Low Nuclear




“Model” concept <+ Reading

* Consider a one-zone (copper plate) model of the GB power system
* No transmission constraints, interconnectors, storage or ramping constraints
* Self-consistent weather impact scenarios from reanalysis

Reanalysis (MERRA)

—

Wind power Demand

Load = Demand — Wind Power

Bloomfield et al, Nature Energy (submitted) 17



“Model” concept < Reading

* Consider a one-zone (copper plate) model of the GB power system
* No transmission constraints, interconnectors, storage or ramping constraints
* Self-consistent weather impact scenarios from reanalysis or climate model

Reanalysis
&caﬁbration

Climate model (e.g., HIGEM, CMIP, PRIMAVERA)

—

Wind power Demand

Load = Demand — Wind Power

Bloomfield et al, Nature Energy (submitted) 18



Wind power scenarios/model % Reading

* Constructed as previously, but using four different capacity scenarios:

Scenario WP capacity Distribution Interpretation
NOWIND 0 GW No use of wind power
LOW 15 GW 2012 Present day (2015)
MED 30 GW 2012 National Grid GG 2025
HIGH 45 GW Future (Rd3) National Grid GG 2035

“Future” = Round 3 +
a” Onshore Capacity (MW}
T T 4000

3000 GG -
- National Grid Future Energy
Scenarios “Gone Green” (2015)

1000
500

200

" Note: interpretive comparisons
o indicate approximate
b consistencies, not precise

W 4% 2y o0 2% 4E 8 6% 4% 2y o 2% 4 T 19

Bloomfield et al, Nature Energy (submitted) definitions




Demand model & Reading

Three step approach:
1. Daily demand: multiple linear regression on temperature, c.f. Taylor & Buizza (2003)
* Trained on recorded national demand 2006-2010; good fit R2~ 0.93

Demand(t) = oq+ 0(t)+ casin(wt) + agcos(ot) + asTe(r) + asTe?(t)

12
+ z ogWE(t)+ Y a;WD(t)+ cisHOL(t)
k=7 =9

2. Simplify demand: remove “special days” with no meteorological significance

Demand = o + ogsin(ot) + acos(ot) + asT (t) + T (1)

[
o

3. Simplified hourly demand:
* “Downscaling” using observed diurnal curves
* One curve per season

Demand Anomaly (GW)
A 7 }

|
=
o

-
~N

Bloomfield et al, Nature Energy (submitted) ) é 1o 15 20

Hour of the Day
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“Model” concept <+ Reading

* Consider a one-zone (copper plate) model of the GB power system
* No transmission constraints, interconnectors, storage or ramping constraints
* Self-consistent weather impact scenarios from reanalysis

Reanalysis (MERRA)

—

Wind power Demand

Load = Demand — Wind Power

Bloomfield et al, Nature Energy (submitted) 21
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Power system “mode

conce pt Unlver5|tyof

Bloomfield et al, Nature Energy (submitted) Aealing

* Result:
* 4 x 36 year scenarios (NO-WIND, LOW, MED, HIGH); hourly resolution
» Convenient to display as annual load duration curves (= 36 LDCs per scenario)
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“ " NO-WIND
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o 20~
©
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0
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=20 . 1 1 | 1 1 | | i
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Duration (% of year)
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Power system metrics G ey

Bloomfield et al, Nature Energy (submitted) < Read ing

* Assume “load” must be met by schedulable plant (either peaking, mid-merit, or baseload)
* Six power system “impact metrics” defined
* Total annual energy required
Peak load
Curtailed wind energy

Threshold of economic opportunity for 7% peaking plant (or volume of energy opportunity)

Threshold of economic opportunity for 91% baseload plant (or volume of energy opportunity)

Annual operating hours of 30GW marginal mid-merit plant

60 60 T T T
— . DC [_1Baseload

A I TAER [ Peaking Plant
» l
~
3 =
G S
O D —
= ! © ! ™S
— ' — : :
! l I
! l |
U I I
| | |
I
0 0 | ]
0 50 o B 100 0 7 50 91100
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Mid-merit operating hours G e

Bloomfield et al, Nature Energy (submitted) < Read ing

Perspective: “Short run” problem
 Substantial decrease in number of hours where load exceeds 30GW (from ~73% to ~50%)
* Also: increase in the year-to-year range

* Doubling from ~10pp to ~20pp

* Significantly increased impact of climate on the operation opportunity

d
60 l [ I l
I NO-WIND
; B LOw
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Baseload threshold of opportunity G ey

Bloomfield et al, Nature Energy (submitted) < Read ing

Perspective: “Long run” problem - optimal amount of “baseload type” plant capacity
* Mean decreases dramatically = less opportunity for this type of generation
* Inter-annual range significantly increases = more climate uncertainty

III

—> Estimates of the economically “optimal” opportunity for baseload which are reliant on short-data may

be significantly in error:
* Recall many studies use between 1 and 10 years of data
* 50% error in the change in optimal capacity for single year; 15% error for 10-year
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Climate drivers e e

(Hannah Bloomfield, PhD thesis in prep) Reading

* Exploration of what causes climate impacts (work in progress)
* Meteorological drivers sensitive to construction of power system
* See also Brayshaw, Dent and Zachary (2012) for wind-during-peak-demand
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Climate change < Reading

* Growing number of studies addressing climate RCP8.5 late C21 ENS mean
Change in wind power potential

,L-, SR , e

change on energy systems

o

65

* General consensus for wind: g 8 10
* Changes are “fairly small” S s :
* Increases in N. Europe g 28 .
* Decreases in S. Europe -_% ¢ 10
* Significant differences between models = ! *
- Differences between studies — even using e 0w m m o om %

same CMIP5 model archive!

 See, e.g., Bonjean-Stanton et al (2016) for a
recent review across many technologies

Reyes et al (2016)
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A note on climate change... % Reading

* Understanding the meteorological drivers is important...
* ... forced regional climate change signals can be quite uncertain (note: colour scales!)

“Climate response”
RCP8.5-HIST Track density DJF

Ensemble mean

Figures: Zappa et al 2013 ’



A note on climate change... % Reading

* Understanding the meteorological drivers is important...
* ... forced regional climate change signals can be quite uncertain (note: colour scales!)

“Climate response”

RCP8.5-HIST Track density DJF HIST%‘;'E@ Ewdel t;ilas
Ensemble mean - nt Ensemble mean

29

Figures: Zappa et al 2013



A note on climate change... % Reading

* Understanding the meteorological drivers is important...
* ... forced regional climate change signals can be quite uncertain (note: colour scales!)

“Climate response”

RCP8.5-HIST Track density DJF “Climate model bias
HIST-ERAInt Ensemble mean

Ensemble mean

.........

Figures: Zappa et al 2013



Aside: Indian monsoon variability & Reading

. - R Precipitation _ Temperature
India: summer monsoon variability (hydro?) Wind power (demand)
* Impact on potential demand and resources — M — —

] _ ore
. . More
Break events: “Active” 4

* less wind (and hydro?) (anomaly from |
* More cooling demand, solar/ normal’)

24—
F |1 Actual 2009
21}~ = Normal
- More
18— 4
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E | (anomaly from T
- 121 4
g | “normal”)
g s_— AI ! Less
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3- l H
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Source: Monsoon Online http://www.tropmet.res.in/

Solar: active-break [, | More in break
m Less in active
Dunning et al, 2015 ERL; Stockwell (BSc dissertation) ‘ 0 b
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[#»a] University of

Aside: Indian monsoon variability <~ Reading

* GCM simulation of monsoon winds poor
* CNRM-CM5

* Generally thought to be a “good”
CMIP5 model for monsoon!

Observed

* Simulates slight decrease in wind speed

CNRM-CM5
Present-day
1979-2005

* |s the climate “response” trustworthy?
* Change much smaller than bias

CNRM-CM5
Future
(RCP8.5 2070-2100)

Figures: Lee (MMet dissertation)

01 23 45267 8 9 101112 13
SPEED (m/s)



' Unlver5|ty of
< Reading

* Topic 1 — climatologies of risk: understanding range of the possible (blue—>red)

Reanalysis
Climate model projections (GCMs)

* Topic 2 — forecasting risk: anticipating outcomes (red—=>green)

* Ensemble prediction (subseasonal, seasonal and decadal)

Probability

o

0 Outcome value

Probability

TN

0 Outcome value
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Forecasting risk: Physical basis Universiyof

Reading

Low frequency variability

* Low-frequency variability exists in the climate system: ENSO, MJO, NAO, AMO, PDO, ...
* Effects regional climate

* NAO vs European wind as a simple example i .
NAO timeseries (annual mean)

From www.ldeo.columbia.edu/res/pi/NAQ/

NAOQ Index

1900 1990
From Woollings et al (2010) L
Shading = U300, contours = Z500 2m ITem||:)eratlu re | Precipitation
b_ | | |
- 70N Telels el 1 tol
NAO and surface ™ riigmbiase TN R .
climate 6N 60N -| T2ted CON el e o
From Ely et al (2013) 4 v
- T T T e 0N SON | S#5s7 e etatesesec 50N - . etk
05  +05 Sle)riessteetiit:
Correlation co-efficient 40N 40N © 8 40N - ::. - .B . :—
(for March but qualitatively Lo - . . =
similar for DJF) 30N 30N M Y — :

Stippling: significant at 95%



Forecasting risk: Physical basis e et

Reading

Low frequency variability

* Low-frequency variability exists in the climate system: ENSO, MJO, NAO, AMO, PDO, ...
* Effects regional climate
* NAC

NAO impacts relevant to energy, e.g.:

« Elyetal (2013) — UK-Norway hydro-wind-demand
« Jerez et al (2013) — NAO on renewables in SW Europe
« Trigo et al (2011) — hydrological resources

O « Brayshaw et al (2011) - UK wind power
From W « Pozo-Vazquez et al (2004) — Solar
. _ [
Shednd e Castro-Diez et al (2002) — Temperature :
NA ... and many others T
Frd "
e . T T g . . o':'::_
05  +05 ) Bl e g oo TR .
Correlation co-efficient 40N ‘i_s( ,/ ___" :_f \J{"—’— 40N - ” .8 - 40N f1ef" '6 < :_
(for March but qualitatively 1_r o - o . o
similar for DJF) 30N gt (“" 30N PERLBLTL N bt = 30N : l j

Stlppllng signiﬁcant at 95% 10W 0 10E ZOE 30E 10W 0 10E 20E 30E 10W 0 10E 20E 30E



Long-range predictability - examples & Reading

Composite of 18 Weak Vortex Events

Stratospheric “harbingers”
(e.g., Baldwin and Dunkerton, 2001)

Lag (Days)

Change in occurrance of NAO-

30° N

Tropical convection (MJO) 0"

(e.g., Cassou 2008)

30° S A

0 2 4 6 8 10 12 14
Lag (days)

NAO+ like MSLP response

North Atlantic Sea Surface Temp
(e.g., Rodwell et al 1999)

anw BOW 30w n 30°F 90W 60" 30W 0 30'E
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Climate components & Reading

* Climate system contains more than just the atmosphere
* Components vary on very different timescales

|” I” variability (no external forcing required)

* “natural” or “interna

* A very schematic diagram — many interactions:

Stratosphere Chemical cycles
(upper atmosphere above ~10km) (e.g., carbon cycle)
Vegetation
Troposphere
(lowest ~10km of Near-surface ocean & _
atmosphere) sea-ice lce caps / glaciers
Land surface Land surface moisture and Deep ocean
temperature snow cover

—_—

Day Week Month  Season Year Decade Century Millennium

37



Remote communication pathways % Reading

Tropical heating vs

geopotential 300 hPa Nino 4 SST vs Geopotential height 500 hPa

() cov (nino4w, gh500) (f) cov (nino4w, gh500)

i

B | | [ [ el
-30-25-20-15-10 -5 5 10 15 20 25 30

ERA-Interim ECMWEF System 4
(reanalysis/”"observations”) (seasonal forecast)

Wave propagation heavily dependent on background flow

Figures: Hoskins & Karoly 1981; Molteni et al 2015 38



Subseasonal and seasonal

forecasting

(554 Universi.tyof
< Reading

Ensemble forecasts
3 weeks — 4 months

Inherently probabilistic

ECMWF ensemble forecast
UK-average 7-day mean 10m windspeed

Skill at large scales (space & time)

Winter Windspeed
70N e g

60N [l e (o
SON faiitic e

40N ¥
30N
20N

-0.9

3-month average skill in winter wind sbeed in .Met
Office seasonal forecast
Scaife et al 2014

-0.6 -0.3 o 0.3 0.6 0.9

Country-average weekly-mean forecast skill for
Temperature, wind and solar
Suckling (unpublished)

Wind speed

Temperature Cloud cover

Europe wide, wk1

Country 1
Country 2
Country 3
Country 4
Country 5
Europe, wk2
Country 1
Country 2
Country 3
Country 4
Country 5
Europe, wk3
Country 1
Country 2
Country 3
Country 4
Country 5

= Lynch et al (2014)
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Europe, wk4
Country 1

Country 2
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Country 4
Country 5
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Sub-seasonal prediction for power

(Lynch et al 2014 and PhD thesis)

ECMWEF month-ahead forecast system:
* weeks 3 and 4 ahead (focus: week 3 in winter season)
* 51-member ensemble: multiple realisations of possible weather

1.Does it provide skillful predictions of wind and temperature?

2.To what extent does the forecast skill propagate into:
a. wind power volume
b. electricity demand
c. electricity price?

3.How can these forecasts be used to optimise trading decisions?

Datasets used: Elexon (power), ERA-Int (weather), Bloomberg (price)
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Sub-seasonal prediction for power

(Lynch et al 2014 and PhD thesis)

ECMWEF month-ahead forecast system:
* weeks 3 and 4 ahead (focus: week 3 in winter season)
* 51-member ensemble: multiple realisations of possible weather

1.Does it provide skillful predictions of wind and temperature?

2.To what extent does the forecast skill propagate into:
a. wind power volume
b. electricity demand
c. electricity price?

3.How can these forecasts be used to optimise trading decisions?

Datasets used: Elexon (power), ERA-Int (weather), Bloomberg (price)
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Meteorological skill & Reading

Probabilistic Skill (CRPS score) Analysis shown for winter only
~ UK-average, weekly-average 10m wind
S T 3-weeks ahead 7-day UK averages:
6 0.9 . L
= 10m wind | o _ _
g o ] ; ~« Significant skill above climatology
g oo ; 3 weeks ahead i (99% confidence)
-'q_; 0.4 E |, 1 -
2 o } } 'l -+« CRPS 0.21 (wind); 0.17 (temperature)
% 2.?_ 1 l} { { % L
s ! '
Aol LI SR S Consistent ROC / Reliability / ACC /
(£ 0-6 2 8 4- 10 6- 12 8- 14 10 16 12 18 14 20 1’3—22 18-24 20-26 22-28 RMSE
% Lead time (days)

Probabilistic Skill (CRPS score)
UK-average, weekly-average 2m temperalur® . Lynch et al (2014). Monthly

SZZ: { { 2m temperature | glgza(r)ther Review, 142, 2978-

o { { % (07N 3 weeks ahead

02- { { ! { I -  Emma Suckling — other European
o1 ! : { f f f i countries and variables
S S - i

o
o

T T T T T T T T T T T
0-6 2-8 4-10 6-12 8-14 10-16 12—1d 14-20 |16-22 18-24 20-26 22-28

Lead time (days) 42
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Sub-seasonal prediction for power

(Lynch et al 2014 and PhD thesis)

ECMWEF month-ahead forecast system:
* weeks 3 and 4 ahead (focus: week 3 in winter season)

1.Does it provide skillful predictions of wind and temperature? — Yes!

2.To what extent does the forecast skill propagate into:
a. wind power volume
b. electricity demand
c. electricity price?

3.How can these forecasts be used to optimise trading decisions?

Datasets used: Elexon (power), ERA-Int (weather), Bloomberg (price)
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Wind power <~ Reading

Capacity (MW)
400

W 6w 2w 2w o 2E 4E

Evolving wind-farm distribution

——

Aggregate wind-farm power curve

—

Calibration to observed power data

Year 2010 Year 2012 Year 2013
— W 1 b 1
g $ loo4s . .i|% |00 i
g £ A I s
o) o e o 34
: Bos| 0 |Bos|
3 2 e 2 f '
& @ « :
Q Q Q
= = =

0 0 0
0 0.5 1 0 0.5 1 0 0.5 1
Era-Interim Power Era-Interim Power Era—-Interim Power
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Use of the 3-week forecast gives significant improvement on

climatological expectation




[#»a] University of
Demand model and forecast < Reading
Regression-based model Residual
Weather (category-dependent
Trend (T anomalies) white-noise)

l
D = ﬁ1t+¢+@+ﬁz+e

Seasonality Mean
Day-of-week
Holidays (major/minor)
) Raw dlema‘nd VS Teﬁ TesTpgraturQ-sensitlive D VS Tx For week-3 average demand:
= ~ ool ¢ | Dot . o . ACC 0.55
o R T + CRPS0.14
c o & * 95% confidence
=5 <4
S o Use of the 3-week forecast
* R Lo _ gives significant
2 T e e improvement on
Effective temperature T Effective temperature T climatological expectation




Sub-seasonal prediction for power

(Lynch et al 2014 and PhD thesis)

ECMWEF month-ahead forecast system:
* weeks 3 and 4 ahead (focus: week 3 in winter season)

1.Does it provide skillful predictions of wind and temperature? — Yes!

2.To what extent does the forecast skill propagate into:
a. wind power volume — Yes!
b. electricity demand — Yes!

@ectricity priceD

3.How can these forecasts be used to optimise trading decisions?

Datasets used: Elexon (power), ERA-Int (weather), Bloomberg (price)
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Modelling concept & Reading

Demand
| Temperature sensitive

100 .. .
Assumed price inelastic

80- \and

60

Most expensive bid
required sets price

Supply stack
Wind as “always on”
20 - Variable contribution shifts

“ stack
0 10 20 30 40 50
Power Volume (GW)

40 -

Power Price (£ MWh™)

High frequency data (6h) used in the met=>»power conversion but interested in

evaluating forecast skill for weekly-averaged blocks 45



Merit order fitting & Reading

Need to estimate the form of the supply curve

Simplified stack model:

«  Three fuels: 1 80 \%
: : c S
«  Wind — always on (price taker) = o
« Coal and Gas - fixed (capital) and S 60 * &
variable (fuel, carbon) costs e 6003\“\
* No storage 8 GS e
«  No interconnection = 40
- Copper-plate transmission %‘ Gas only
* No ramp constraints 8 20
n Wind (variable) +
« All assumptions are believed appropriate for an © baseload (offset)
initial analysis of the GB power system m 0 ' '
0 20 40

« Range of efficiencies for individual coal and gas
plant: assume exponential curve Power (GW)

* Fit time-varying stack parameters — broadly
corresponding to plant “efficiency” - using recorded
price, demand and wind generation data 49



Price climatology % Reading

65 - - Weekly price N
‘__,.;\ 60 — J‘ —
< 55 f, |
= v\ " 4 ,

W 50 f AWEVA W ’ [
@ 45- A /
©
o 40— .
35 I I | |
Jan 2011 Jan 2012 Jan 2013 Jan 2014

Compare blue and red lines:

* Blue = actual price

* Red = price simulated by the power model, given perfect knowledge of wind and
demand volumes

Grey shading:
» Price quantiles from climatological wind power / demand records (from ERA-Interim)
» Interpretation: Spread of “possible prices” given known historic weather variability

Good estimate of the mean. Climatological quantiles overconfident esp at daily time-scale.
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Price forecast <7 Reading

6 Weekly price -

N
|

Price (£/MWh-1)
v On

1
AN

Jan 2011 Jan 2012 Jan 2013 Jan 2014

Concerned with predicting price anomalies.

Can the ECMWF week-3 forecast out-perform the climatological PDF shown above?

Answer: Yes.

« ACC 0.53; CRPS 0.15 (99% confidence)

Similar skill for both the “operational” method (using real price records) and “synthetic” method
(reconstructing an estimate of price from recorded weather). >l



Price forecast <7 Reading

6 Weekly price -

N
|

Price (£/MWh-1)
v On

1
AN

CYTH Y
r ',” w! r v -
I

Jan 2011 Jan 2012 Jan 2013 /an 2014

Changing “climate spread”:
seasonally, year-to-year
Can the ECMWF week-3 forecast out-perform the climatological PDF shown above?

Concerned with predicting price anomalies.

Answer: Yes.

« ACC 0.53; CRPS 0.15 (99% confidence)

Similar skill for both the “operational” method (using real price records) and “synthetic” method
(reconstructing an estimate of price from recorded weather). >2



Sub-seasonal prediction for power

(Lynch et al 2014 and PhD thesis)

ECMWEF month-ahead forecast system:
* weeks 3 and 4 ahead (focus: week 3 in winter season)

1.Does it provide skillful predictions of wind and temperature? — Yes!

2.To what extent does the forecast skill propagate into:
a. wind power volume — Yes!
b. electricity demand — Yes!
c. electricity price? — Yes!

3.How can these forecasts be used to optimise trading decisions?

Datasets used: Elexon (power), ERA-Int (weather), Bloomberg (price)
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Speculative trading application % Reading

« Simplest speculative strategy:

« Assume market only acts on climatological expectation (i.e., does not use weather
forecast for week 3 and 4)

« Buy/sell one forward contract each week depending on forecast:

» Forecast says less DNW / lower price than climatological expectation (i.e., market
price is overvaluation) — sell one contract

* Forecast says more DNW / higher price than climatological expectation (i.e., market
price is undervalued) — buy one contract

| | | | !
100 < [ --—-=--—- Week 3 (DJF) ----~----Week 4 (DJF) ——— Week 3 (all months) Week 4 (all months) |

©
o
|

60 —

40 —

Cumulative Return (%)

o e

Jan-2009 Jan-2010 Jan-2011 Jan-2012 Jan-2013 Jan-2014
Time (Years)



Speculative trading application % Reading

« Simplest speculative strategy:

« Assume market only acts on climatological expectation (i.e., does not use weather
forecast for week 3 and 4)

* Buy/sell one forward contract each week depending on forecast:
» Forecast says less DNW / lower price than climatological expectation (i.e., market

Demonstrates significant improvement over “mere climatology” but assumes:

« Perfect model of power system impact
» All other actors do not have access to the same information
« Asymmetric returns (c.f., call/put or other risk hedges)

Cumulative Rety

Jan-2009 Jan-2010 Jan-2011 Jan-2012 Jan-2013 Jan-2014
Time (Years)




Summary & Reading

Weather and climate risk matters for energy applications

* Climate variability and change (years-to-decades) can produces significant impacts on
energy systems

* Opportunities to better manage risk... but end-to-end process understanding and
uncertainty quantification important

Risk climatologies and climate change:
* Reanalysis and GCMs are powerful tools but must be used carefully
* Climate drivers need to be understood: does dataset include the relevant processes?

Forecasting risk:
* Subseasonal, seasonal and decadal forecast systems beginning to offer predictive skill
 Evaluation should recognize the integrated decision-making processes

* Power system impacts (for climate impact modellers)
* Power systems are “more” than just a set of ingredients

* Dynamical downscaling is expensive and may not always be necessary (or helpful)
56
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Citations and upcoming < Reading

Major projects:

* ECEM climate services for energy I
« PRIMAVERA climate-energy impacts €= I

Recruiting now! |

* ODYSEA Ocean drivers of European climate variability

Contact details (including website for models and data):

* d.j.brayshaw@reading.ac.uk ; www.met.reading.ac.uk/~energymet

Citations:
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Letters, 10, 064002.

Cannon, D.J. et al (2015) Using reanalysis data to quantify extreme wind power generation statistics : a 33 year case study in
Great Britain. Renewable Energy, 75. pp. 767-778.

Drew, D. et al (2015) The impact of future offshore wind farms on wind power generation in Great Britain. Resources Policy, 4
(1). pp. 155-171.

Lynch, K. J. et al (2014) Verification of European subseasonal wind speed forecasts. Monthly Weather Review, 142 (8). pp.
2978-2990.

Ely, C. R. et al (2013) Implications of the North Atlantic Oscillation for a UK—Norway renewable power system. Energy Policy,
62. pp. 1420-1427.

Brayshaw, D.J. et al (2012) Wind generation's contribution to supporting peak electricity demand: meteorological insights.
Journal of Risk and Reliability, 226 (1). pp. 44-50.

Brayshaw, D. J. et al (2011) The impact of large scale atmospheric circulation patterns on wind power generation and its 57
potential predictability: a case study over the UK. Renewable Energy, 36 (8). pp. 2087-2096.
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Aside: The limits of reanalysis 2 & Reading

Extension to time-variability: how well does MERRA capture differences in changes in wind
speed between sites?

(b) Correlation (3AU, 3AV)
MIDAS AU,, MERRA AV, i

PN RS S

Correlate dAU with dAV

0.6}

0.4t

MIDAS AU, MERRA AV,

0.2}

Linear correlation coefficient

At=1hr |
— At =3 hr
— At =6 hr
At=12hr
: : : — At = 24 hr
200 400 600 800 1000 1200 1400
Distance (km)

Correlation ~0.5 @ 300 km for 6-hour changes in wind speed

Cannon et al (2015) 59



Aside: UK-Norway power system oz e

Rea ing

(Ely et al 2013)

* UK system: power limited (generating capacity to meet peak demand)

* Norway system: energy limited (energy storage to provide for total demand)
* “what if” UK and Norway were connected?
* Wind generation UK, hydro generation Norway, demand from both regions
* Critical period: late winter/early spring

Inflow (GWh/wk)
6500
100%| — — - - 6000 : : .
§ =% nflow £ Storage | sso NAO-negative winter/spring:
0o Cold (high demand)
2 \ w00 Still (low wind)
8 l L4000 ¢ 2 highload
% | - 3500
O | _--[3 And
o - T -7 250« Cold (inflow from snow
o - 2000
§ | R delayed)
n | "1 1000 e .
T T ] 50 2 NAO prediction in spring?
0% 0
© March June Sept o
Week of year

60
Figures: Ely et al 2013



