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Projection A projection is a potential
future evolution of a quantity or set of
quantities, often computed with the aid

Some definitions

Predictability The extent to
which future states of a
system may be predicted
based on knowledge of
current and past states of
the system.

of a model. Unlike predictions,
projections are conditional on

assumptions concerning, for example,

future socioeconomic and

technological developments that may

or may not be realized.

Uncertainty A state of
incomplete knowledge that
can result from a lack of
information or from
disagreement about what is
known or even knowable. It
may have many types of
sources, from imprecision in
the data to ambiguously
defined concepts or
terminology, or uncertain
projections of human
behaviour.

IPCC AR5 WG1 Glossary
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What are you ‘take away’ messages from these examples?

Tanzania — Mean annual temperature Bhutan Consecutive Dry Days
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Based on about 20 CMIP5 GCMs: shading shows model spread (5th-95th
percentile), thick line is the ensemble mean, thin lines are individual models.
Orange: RCP8.5, Green: RCP2.6

Blue: HadEX2 observations.

Goodess et al., 2016: Nature Scientific Data, in preparation
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Some attempts have been
made to ‘partition’ or
quantify these different
sources of uncertainty —

depends on variable,
season, timeframe, location.

Same goes for uncertainty
related to downscaling.
e.g., Dequé et al., 2011,
Climate Dynamics
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« Decadal predictions

« Seasonal forecasts



IPCC AR5 WG1 Chpt 11, Box 11.1

Decadal
predictions

Initial value
problem
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day week month season vyear decade century
Weather Seasonal to Long term climate
predictions interannual change projections
predictions

So can we take a seamless approach, given the different nature of the
modelling problem and the associated uncertainties?

But whatever the timescale, need to verify/validate against observations



Seasonal climate predictability and forecasting: status and prospects
Doblas-Reyes et al., WIREs Climate Change 2013

Provides a very accessible review of the issues:

- Initial condition uncertainty
- Model inadequacy
- Lack of appropriate computational resources

And the sources of predictability:

« ENSO, NAO, SST etc
» Tropospheric/stratospheric interactions etc

“Dealing with uncertainty helps decision makers with better decisions on
whether or not to take any action given the probability forecast of an event”

“Forecast quality is fundamental to the prediction problem because a
prediction has no value without an estimate of its quality based on past

performance”  So crucial for climate services!



Met Office
Hadley Centre

Reliability: do forecast
probabilities match
observed frequencies?

Brier skill score: How
much better, compared
to climatology?

ROC skill score:

potential usefulness,
after calibration

www.metoffice.gov.uk

Skill & reliability
of seasonal forecasts (hindcasts)

Correlations, reliability diagrams, ROC diagrams
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Brier Skill Score = how much

better is the forecast system,
compared to climatology?
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Reliability diagrams:
do forecast probabilities
agree with historical
observed frequencies?

Hit rate

Time series plot

Correlation: basic co-variability between
standardised time series

(using ensemble mean)
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ROC diagrams: how well the forecast system can
distinguish between events occurring and not

occurring

ROC Skill Score (area under ROC curve)

= potential usefulness

With thanks to Philip Betts, UKMO

(no info on bias or reliability)




Validation of climate change projections, e.g., 50 km Africa CORDEX RCMs

Precipitation (pr) | JAS | 1998-2008 Taylor diagram — shows root mean
T, square error, correlation coefficient and
standard deviation
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FIG. 4. GPCP mean JAS precipitation for 1998-2008 and differences compared to GPGP in the other gridded observations, the individual
RCMs, and their ensemble average.

Top row: four different observational sets Kalognomou et al., 2013, J. Climate

12 GCM-forced CORDEX RCM runs 10 CORDEX RCMs, southern Africa
Seasonal rainfall vs GPCC
Nikulin et al 2012, J Climate,



Some extreme views on downscaling!

Garbage in, garbage out — so what'’s the point of downscaling?

Added value of downscaling is a
legitimate science question —
particularly in the context of climate
change projections which can'’t be
verified — and is (to some extent)
being addressed.

There’s lots more detail — so it must be more accurate

_—

It’s like having a meteorological station every OSkm, I
interpolates data collected from global meteorological stations and
orbiting satellites, providing accurate data in detailed 9km grids.

The data available here are climate projections from GCMs that
were statistically downscaled and calibrated ... The spatial
resolution is 30 arc seconds (~1 km2).




Gobiett et al: http://cordex2013.wcrp-climate.org/parallel_B1.shtml
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There is a huge literature on verification and validation and in any scientific
conference you’ll see hundreds of plots and maps showing comparisons with
observations:

Two questions:

« How well are the underlying processes being simulated?
(there is a need for more process-based evaluation)

« How to convey this information to the user?

On climate change
timescales need to
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Fmemlm Whatever timescale we’re interested in,
an ensemble approach is appropriate for
addressing modelling uncertainty:

Initial value
problem
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Weather Soasonal to Long term climate * Intra-model ensembles

predictions interannual | change projections

 And a combination of the two

Motivation for:

« CMIP5 and CMIP6 (GCMs — climate change)

« CORDEX (RCMs — climate change)

* CMIP6 Decadal Climate Prediction Project (DCPP)

« EUROSIP (3 models, 12-51 hindcast members, 42/51 for seasonal forecasts)
* etc

But how to present ensemble information?



Tobin et al., 2015, Climatic Change — European wind power
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Fig. 3 a Future changes in annual wind power generated from the European and the 15 biggest national
windmill fleets installed at the end of 2012, sorted by their mstalled power capacity (decreasing order). EU, DE,
ES, IT. GB, FR, PT, DK, NL, SE, IE, PL, RO, GR, AT, BE refer to Europe, Germany, Spain, Italy, Great Britain,
France, Portugal, Denmark, Netherlands, Sweden, Ireland, Poland, Romania, Greece, Austria and Belgium
respectively. The changes are assessed with regards to the 1971-2000 period (in %). The cross within the boxes
indicate the ensemble mean of changes, the line the median, the boxes the 25-75th percentile interval of the
ensemble distribution and the whiskers the ensemble minimum and maximum changes. The left side bars
correspond to the 2031-2060 penod (magenta/cvan) and the right side bars to the 2071-2100 penod (red/blue).
Representing inter-annual variability, red bars indicate the standard deviation of the annual wind power
production series for the period 1971-2000 (0+one standard deviation). b Same as a but for the European and
the 15 biggest national fleets planned by 2020



Region 1 | Region 2 | Region 3

Jerez et al., 2015,
Nature
Communications —
European PV solar
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Figure 3 | Time series of PV power production along the 21st century under both RCP4.5 and RCP8.5. Thirty-year running mean time series of the
estimated PV power production anomalies under both the RCP4.5 (blue) and the RCP8.5 (orange) in each region. Anomalies are computed with respect to
the mean values in the reference period 1970-1999 and expressed in %. Solid lines depict the ensemble mean values, with the widest segments, appearing
only in the first plot (region 1), indicating S2N=1. Shadows show the ensemble spread. Vertical black bars depict O *the ensemble mean value of the
standard deviation of the annual series of PV power production anomalies in the reference period, as representative of the current natural variability. If the
ensemble mean change exceeds such a quantity, a thin black line is superimposed on the ensemble mean series. Small subplots depict the fraction of
variance (in %) explained by the change of RCP (dark-grey shadow), GCM driving run (light-grey shadow) or RCM (white shadow), as obtained from an
analysis of variance applied to the whole set of 30-year running mean time series of PV power generation anomalies considering only the scenario period.




Van Vliet et al., 2016, Nature Climate Change — Hydropower and thermoelectric power
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Figure 3 | Impacts of climate and water resources change on annual mean usable capacity of current hydropower and thermoelectric power plants.

In this example, when we look at the impacts of the projected climate changes,
the picture looks a bit different — because the large and robust temperature
changes dominate the more uncertain changes in streamflow.

So it’s important to consider the impact on the system — not just the climate.



How to reduce/quantify/understand uncertainty:

Better physical understanding of the climate
system on different spatial and temporal scales

More process-based evaluation

Computing resources to produce larger
ensembles and simulations at higher spatial
resolutions (but need to use these resources
intelligently)

More/better observed data for assimilation,
initialisation, verification, calibration, validation

Better exploration of uncertainties associated
with bias adjustment/correction

More work on variables that are crucial for
energy, e.g., wind, radiation, riverflow .......

But the real challenge for climate services is how to COMMUNICATE uncertainty
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Barriers to using climate information:
Challenges in communicating probabilistic
forecasts

to decision makers
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Exploring the use of seasonal climate
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|ldentifies ‘communicating uncertainty’
as one of the barriers to uptake.

EUPORIAS



And finally, some questions to leave you with

What is appropriate language to use in climate services?
» Uncertainty, confidence, likelihood, probability, robustness......

« Should uncertainties be presented in quantitative/qualitative terms?

* How to visualise uncertainties?

 How do attitudes towards risk affect the interpretation of uncertainties?
» Does low skill/large uncertainties mean that information is not ‘useful’?

 What about ‘non-climate’ uncertainties?

» Are there additional or different types of uncertainty associated with
forecasts/projections for (small) islands (e.g., PNG, Dominica)?



