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Outline

 Stakeholder Needs
J ;edlents

~ + Forecasting Across Scales
- » Numerical Weather Prediction
_->- Jata Assimilation

- > N casting (Minutes to Hours)
> Blendlng — IR

> Power Conversion

» Uncertainty Quantification

» Extreme Events

« Assessment

 Valuation

Examples:
« Solar Power Forecasting
 Wind Power Forecasting

Theme: Smartly blending data, dynamics, physics, and
statistical learning methods
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Industry Needs for Renewable
Energy Forecasts

 Need to predict POWER based on met variables
« 80-m wind speed
 Surface irradiance — GHI, DNI, DIF
« Time frames for prediction
« Long range — weeks — =
maintenance and distribution
* Medium range — days — hourly
day ahead trading
* Nowcast range — hours — 15-min
grid integration
» Very short range — seconds to minutes —
voltage control




Value Chain:

What is the value of solar power forecasting?
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Meteorological Prediction:

Perfect
Skill

Forecast Skill

_Engineered
Blended System

Numerical Models
Little

Skill

rvation-based methods

Nowcast System
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Forecast Lead Time (hrs)

Adapted from Ravela, 2008
Auligne, 2014



Meeting the Needs:

Seamless Approach to Solar Power Forecasting

Prediction Across Timescales

Numerical Weather Prediction

Statistical
Prediction
Sateilite
Cloud
Total Sky Advection
Imaging

Rapid-Update WRF
Nowcasting

0 2 B

Time Scale (hrs)



Forecasting System

Prediction Across Timescales

Numerical Weather Prediction B
Probabilistic

Solar Power
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Atmospheric Modeling
Numerical Weather Prediction

15km ARW WEF, GES«init « = NCAR /MMM init: OO0 UTC Sun 30 Jun 13
n Fcst: 18 h Valid: 18 UTC Sun 30 Jun 13 (12 MDY Sun 30 Jun 13)
Dynamlcs Tolal precip. since h 0

Physics
Quality Assurance
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namic Meteorology

= Numerical methods
treat this as an initial

I
2y
value problem
= Discretize in space
= |ntegrate in time

= Constrained by
continuity

= Related by state eqn
@ Nonlinearities make it

P = pRT difficult




Physical Parameterizations

PENNDITA
@ Various processes that % PSU SCP Schematic
we can’t resolve

=@ Thus, parameterize
given
= Knowledge of
physical process

= Empirics

Schematic of the prototype PSU SCP, where a is the neutrally-buoyant cloud (NBC)
fraction, /_is the NBC cloud water content, [, is the cloud water content in the

| Constants and tuning updraft denoted by subscript u, R_, is the updraft detrainment rate; and Z,, is the

depth of the PBL, etc,

AJ Deng, Dave Staufter




RF (Weather Research &
casting) Model Physics

iffusion (ditf_opt, km_opt)
Radiation
Longwave (ra_lw_physics)
Shortwave (ra_sw_physics)

urface layer (sf_sfclay_physics)

nd/water surface (sf_surface_physics)

= PBL (bl_physics)

m Cumulus parameterization (cu_physics)
= Microphysics (mp_physics)

http://www.google.fr/url?sa=t&rct=j&g=&esrc=s&source=web&cd=2&ved=0CDcQFjAB&url=http%3A%2F
%2Fwww.mmm.ucar.edu%2Fpeople%2Fdudhia%2Ffiles%2F presentations
%2FWRF_Physics_Dudhia.ppt&ei=mKjQUa3qJabw4QSdnoDgCw&usg=AFQjCNGb933vSVDkzHeeDRk-
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Different Schemes, Different Results
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Figure 4. Average rainfall rate, for a spring-season convective event (a), based on
observations (OBS) and for five simulations that used different treatments for the convection -
four different parameterizations, and no parameterization (EX). Also depicted is the rainfallrate
bias score averaged for three warm-season convective events (b), again for each of the

four parameterizations and for the use of no parameterization. The four convective

parameterizations were the Grell (GR), Kain-Fritsch (KF), Betts-Miller (BM), and Anthes-
Kuo (AK) schemes. Adapted from Wang and Seaman (1997).




Value of high-resolution
regional model

Resolution: 0.0 km

NCAR



Snowpack in Central Rockies: too little at high
elevation and melts three months too early at

coarse resolution
36 km 2 km

SWE from CTRL 3gkm BMJ : 04/152008 SWE from CTRL 2km : 04152008

SWE (mm)
SWE (mm)

April 15 snapshot of snow pack at two model resolutions ﬁ

(Simulation of 2007-2008 water year)
NCAR



QUALITY ASSURANCE IN
ATMO
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QUALITY ASSURANCE IN
ATMOSPHERIC MODELING
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WREF-Solar

1207 -120° 10 -100° 80 80" ~70° 60

% Improvement over standard WRF

400

GHI [W/m2]

Courtesy: Pedro Jimenez TBL BND FPK GCM PSU DRA  SXF
Stations



Fluid Flow is Sensitive to
Initial Conditions

1
ﬁ+ng\1; - —VP+g- W

ot Y » Atmospheric flows display
sensitivity to initial &
boundary conditions and to
physics parameterization

mm) Chaotic Attractor

» How do we stay on the
correct trajectory?

=) Assimilation
mm) Uncertainty
Quantification

Lorenz (1963)



Assimilation provides best ICs

= Data Assimilation - incorporating observations
into a model

= Surface observations

= Satellite observations

= Atmospheric profiles

= Radar observations

= Data from wind or solar farms
» Specialized data




0-3 hour Wind Energy Predictions

Gain:

17 % in RMS
20% in MAE
11% in Bias

03/04 03905 03/086 03907

03/04 03/08 03/09 03/10




Wind Energy Ramp Event

8/03/09 771mw up-ramp from 20:10 - 22:10 followed by a 738mw down-ramp from 22:40 - 00:50

800 MW increase then decrease over 4 hrs!

7

=

\

Passing Thynderstorms \

A
J

\/ -

0IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

BRSO NP NP PPNS PN SENP PRI LIPS
T\ N }\\ r\\ )\V }\'U \‘U )\J }\J }\J q)) {1)) (1)) (1' (‘[/ (L (LV (I/V {1/[/ (1;1 (1;) (‘l/J N N




allows recovery el
characteristicsof M. = &

realization

T

v

Courtesy: Jenny Sun



Application: Wind Energy Ramping

Variational Doppler Radar Analysis System

VDRAS

Gust fronts
approaching
‘wind plant’

Wind ramp
event 1s
imminent

Need to provide
time-of-arrival and
magnitude of wind
energy ramp.
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NCAR Auto-Nowcasting System



/Vind Energy Ramp Event

Fereed taZ; 1041272010 00162
VORAST: 0.0 ke 1071272010 00;0d
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StatCast

Nowcast Irradiance
| CIRACast Calculation
Integrator (POA)

WRF-Solar




ome Models Employ AL:StatGast

- - Tyler McCandless
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Satellite-Based Forecasting
DELAIIS

Imagine we are viewing this cloud from the satellite
Without account for
sensor/sun geometry, the
placement of cloud
shadows can be 10’s of
Km in error

Advection of complex cloud PV Array
layers requires proper
account for wind shear

——— —
- ——

Matt Rogers & Steve Miller: Colorado Staté Universitv

TYPES OF WIND SHEAR
Speed / Directional Both
- / /
.
—




Multi-sensor Advective Di

usive foreCast

Tom Auligne; Xu et al. (Adv. in Atmos. Sci. 2014)
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Observational

Day-Ahead
System

[ DNI
Hourly Avg . DIF
Irradiance - GHI
POA
[ WRE
T ‘
Data _— g
: A MADCast
CIRACast | |
. DNI |
15-minute DI
Irrodionce - GHI
POA

Nowcast

Data



Variable Energy Forecasting System

Natl Center Data
HRRR, NAM, GFS, RAP
GEM (Canada), ECMWF

Wind Farm Data

Nacelle wind speed
Generator power
Node power
Availability

WRF RTFDDA
System

Ensemble Dynamic,
System Integrated Probabilistic
FSoretcast and Analog
Solar Energy l (D}’gazfg) l Forecast
Forecast = Meteorologist
Potential
- - VDRAS Power
Supplemental - Forecastin
Wind Farm Data WISHERSIG —
Met towers
Wind profiler Expert System
Surface Stations nowcasting) WRF Model Output
Extreme

Weather Events

n Scientific Advances in Wind Power Forecasting
NCAR



Customized Power

< Conversion Curves

Raw Turbine Power Distnbiton by Wind Spees Oualcy Conroled Turbine Wind Speed vi, Powey
M S P ¢ . ’ -———— . o . ' WO » v — - - —— —v—
| 751‘ ’ | | -
wo| Percentile ' |
swol lI0NE

Observation-based power curves represent the site better than
manufacturers’ power curves

Gerry Wiener



Power Conversiofili

Empirical Power Conversion: Regression Tree - Cubist

Example for single axis tracking PV plant

Pattern depends heavily on time of
day, AM takes higher route; PM
more linear route

SANLMETO1 vs SLVA.GEN.ThermalV.PMeas.1.PEAG 400
20150501 - 20151001; 200
4844 matched data, minPowerCutoff: 0.0, minirrCutoff: 0.0
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1000

30
25
20

wer

€ 19

1000

1200

Date Range: 20150624 - 20150625
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P i,

2015062402 2015062407 2015062412 2015062416 2015062421
Time (UTC)
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Power
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—

Base

Enhanced

Quantify Value - Metrics

Model-Model Comparison

Mean Absolute Error
Root Mean Square Error
Distribution (Statistical Moments and Quantiles)

Maximum Absolute Error

Pearson's Correlation Coefficient
Kolmogorov-Smirnov Integral
Statistical Tests for Mean and Variance

Renyi Entropy

Brier Score incl. decomposition for probability forecasts
Receiver Operating Characteristic (ROC) Curve
Calibration Diagram

Probability Interval Evaluation

Economic Value

Operating Reserves
Analysis
Production Cost

Cost of Ramp Forecasting

Tara Jensen
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Day Ahead (DA)

SunCast and WRFSolar §
80 Outperform Baseline (NAM)

and other components
WRFSolar

08 o0 10 1" 12 13 14 1% 18 1 34
SunCast Issue Time (UTC)
— (M « MR —n WRFSoe

. (5 — NAMS
— RO SunCast
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DiCast System Blends Output from Several

Numerical Weather Prediction Models

Public Service of Southwestern Public Service Company
Total Power, 03/08 Ramp

Scientific Advances in Wind Power Forecasting
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Probabilistic Prediction

= Recent emphasis in
popular scientific
literature to emphasize
probabilistic approach

= Nate Silver thinks
meteorologists are
ahead of the rest:
= Embrace uncertainty
= Quantify it
= This produces better

deterministic forecasts as
well

N\

LOOK INSIDE!

the signal
and the noise

why so many
predictions fail~
but some don't

nate silver




Ensemble Prediction
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RMSE of Nominal Power (%)

Ensemble Mean RMSE (kw)

100

300

200

What if we had only one
member? Analog Prediction

24-30 33-39 42-48 48-54 57-63 66-72
Forecast Lead Time (hours range)

R*2=0.991 AnEn

R*2= 0.859 EPS
R*2=0.966 COSMO-LEPS

200 300
Binned Spread (kw)

Analog Ensemble
Method

Statistical learning method to
calibrate model . output and
provide probabilistic information
Based on observed past model-
observation pairs

Algorithm search for analogs and
clusters them

Shown to perform at least as well
as full NWP ensemble systems



Probabilistic Power . Prediction

With Analog Ensemble Method

h

% Deterministic forecast

* Observations
*
J‘ Percentiles

Normalized Power (Nameplate Capacity)

12:00 1500 "

Forecast Lead Time




Icing Forecasting System ExWx Provides
~— Categorical Forecast of Icing

= Predicting wind turbine icing is critical for power
trading on open market and short term load balancing.

= In order to successfully develop a robust wind turbine
icing forecasting system, a truth dataset must be
developed.

= Limited documentation of icing events and monitoring
equipment make identifying icing after the fact difficult.

= Plus, there is a “Big Data” problem.




Datasets Forlicing-Forecast

Power Data Sensor Data

http://www.newavionics.com/Images/9734_410x359.jpg

15 20
Wind Spoed (m/s)

NWS Data

NWS Forecast Zones

Processing

Forecast
Products




ExWx Uses WRF-RTFDDA and DICast Blended
NWP Output to Compute Icing Potential

= WREF icing potential
Evaluates all WRF model levels < 1km

Combines model level height, model
predicted supercooled liquid water, and
temperature at each level using fuzzy
logic maps (configurable)

Final potential at each WRF grid point is
the maximum of the icing potential at
each level < 1km

DiICast icing potential

Conditional probability of icing (CPOI)
deterministic forecast from DICast

Combines five NWP model solutions

Typically one site per farm, more in some
cases




Icing Forecasting System Provides
Categorical Icing Forecast

Note no missing data-wherever
DICast was missing the WRF is used
exclusively (and vice-versa)
Threshold of 0.5 is configurable
based on experience of operators

= Event well forecast by ExWx!!
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ExWx icing potential forecasts for all
ExWx runs affecting the event
window (8 hours centered on 00Z)

B Icing potential < 0.5 inside window

B Icing potential > 0.5 inside window

B |cing potential > 0.5 outside window
Icing potential < 0.5 outside window




Wind Power Forecasts Resulted in Savings
for Ratepayers

Forecasted MAE Percentage Savings
2009 2014~ Improvement
16.83% 10.10%  40% ($49,000,000

*Data through November, 2014

Also: saved > 267,343 tons CO2 (2014)

Drake Bartlett, Xcel

Scientific Advances in Wind Power Forecasting



1500

Production Cost Modeling

1000

* Accomplished by Utility
Partner — Xcel 0

Value of 50% Forecast
Improvement: $820,000 (2024 -
increased utility scale capacity)

e Upscaled by NCAR (Lazo)
— Annual National Savings:
S10-S21M / year (2015-2024)

— 26 year savings: S455M

NNNNNNNNNNNNNNNNNNNN

——SOLAR FORECAST
=—SOLAR GENERATION (MW)




Observations
NWP Models SMUD
NAM 'y MADIS

GFS - OK Mesonet

WRF-Solar | BNL
GEM SURFRAD
= =

RAP/HRRR -} Xcel
' : .. DeSota
t ' o ARM

NCAR
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* A new forecast is generated every hour

I

* Individual images are generated for each lead-time
a — Currently hourly out to 60 hours.



NCAR
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Mean Absolute Error Hourly Comparison
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Summary

Theme: Smartly blending data, dynamics, physics, and
statistical learning methods

* We need good models of the dynamics &
physics R 5 i >

 We need high quality data to assimilate

« Statistical learning (artificial intelligence) can
add value and help to determine the
characteristics of the physics

« Specialized applications may require
specialized forecasts
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* Forecast Clear Sky Index
* Separate into:

e Clear

* Partly Cloudy

* Cloudy

Tyler McCandless

Percent Improvement Over Persistence: Cloudy

§ 60.00 Days
£ so00
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WRE-Real Time 4D Data Assimilation (RTFDDA)
Assimilates Wind Farm Data
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WRF RTFDDA exhibits exceptional capability for forecasting wind ramps
in term of their timing, rates and magnitudes.
Rapid cycling (hourly) WRF RTFDDA is recommended where 0O - 6h

ahead wind ramp prediction is critical.




WRF- RTFDDA Improves
Short Term Forecasts (0-9h)
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Bold confident intervals means statistical significance
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Empirical Power Conversion Curves
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Evaluation Systerng

NowCast and
Components M E I

Model Evaluation Tools

‘ MODEL EVALUATION
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Some Highlights

WRF-Solar improved on Standard WRF by 20-80%

WRF-Solar also important component of NowCast system, often best
component

StatCast-Cubist can improve upon smart persistence by 37-62% -
short range (0-3 hr)

TSICast better than persistence first 15 min — 29-34%

Cloud advection and assimilation methods predict ramps well —
Nowcast with WRF-Solar-Now

Nowcast improvement 45-53% MAE averaged all conditions, all sites

Saw 47% improvement in prediction at Xcel sites, despite 2016
harder to predict (El Nino)

DICast® improves on best forecast
10-28% MAE

AnEn improves by another 16-96% MAE

SunCast improvement 90% MAE (SMUD)

WRF-Solar
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scommendations for Sol;

Blend various component models or systems together with
machine learning.

Use a base NWP model enhanced and tuned for the purpose.
Include multiple NWP models.

It is possible to improve upon persistence, even at the very
short-range by using methods trained on in situ observations.
Satellite based cloud advection is useful, but tricky.

NWP can be combined with satellite data via assimilation for
nowcasting.

The analog ensemble approach is helpful for both improving
the deterministic blended forecast as well as for producmg a

probabilistic prediction.
An empirical power conversion method,
viable, even where data limited.
Enhanced metrics necessary.



