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Outline 

 
 
Examples: 
•  Solar Power Forecasting 
•  Wind Power Forecasting 

 

Theme:  Smartly blending data, dynamics, physics, and 
statistical learning methods 

•  Stakeholder Needs 
•  Ingredients 
•  Forecasting Across Scales 

Ø  Numerical Weather Prediction 
Ø  Data Assimilation 
Ø  Nowcasting (Minutes to Hours) 
Ø  Blending 
Ø  Power Conversion 
Ø  Uncertainty Quantification 
Ø  Extreme Events 

•  Assessment 
•  Valuation 
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Industry Needs for Renewable 
Energy Forecasts 

•  Need to predict POWER based on met variables 
•  80-m wind speed
•  Surface irradiance – GHI, DNI, DIF

•  Time frames for prediction 
•  Long range – weeks – 
       maintenance and distribution
•  Medium range – days – hourly
       day ahead trading
•  Nowcast range – hours – 15-min
       grid integration
•  Very short range – seconds to minutes – 
       voltage control
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Value Chain:  
What is the value of solar power forecasting?  

Clouds	

Aerosols	

Clear	Sky	

SURFRAD	

Satellites	

Total	Sky	
Imagers	

Pyranometers	

WRF-Solar	

HRRR	

StatCast	

TSICast	

CIRACast	

MADCast	

DICast	

NowCast	

Produc?on	
Cost	

Changes	

Unit	
Alloca?ons	

Area	
Forecast	

Point	
Forecast	

Reserve	
Es?mates	 Reserve	

Analysis	

Projected	
Power	

Produc?on	 Day	
Ahead	
Planning	

Real	Time	
Opera?on	

Actual	
Power	

Produc?on	

Load	
Balancing	

Uncertainty	
Quant	

Power	
Conversion	

Inspired	by	Jeffrey	Lazo	



Adapted	from	Ravela,	2008	
Auligne,	2014	

=	Physical	approach	

Meteorological	Predic?on:	



Meeting the Needs: 
Seamless Approach to Solar Power Forecasting 
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Forecasting System 



¨  Dynamics 
¨  Physics 
¨  Quality Assurance 
¨  Sensitivity to Initial 

Conditions 
¨  Preprocessing – Needs 

for Assimilation 
¨  Postprocessing – 

Blending Information 
¨  Validation 
 



¨  Numerical methods 
treat this as an initial 
value problem 
¡  Discretize in space 
¡  Integrate in time 
¡  Constrained by 

continuity  
¡  Related by state eqn 

¨  Nonlinearities make it 
difficult 
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¨  Various processes that 
we can’t resolve  

¨  Thus, parameterize 
given  
¡  Knowledge of 

physical process 
¡  Empirics 
¡  Constants and tuning 

AJ Deng, Dave Stauffer 



¨  Turbulence/Diffusion (diff_opt, km_opt) 
¨  Radiation 

¡  Longwave (ra_lw_physics) 
¡  Shortwave (ra_sw_physics) 

¨  Surface 
¡  Surface layer (sf_sfclay_physics) 
¡  Land/water surface (sf_surface_physics) 

¨  PBL (bl_physics) 
¨  Cumulus parameterization (cu_physics) 
¨  Microphysics (mp_physics) 

http://www.google.fr/url?sa=t&rct=j&q=&esrc=s&source=web&cd=2&ved=0CDcQFjAB&url=http%3A%2F
%2Fwww.mmm.ucar.edu%2Fpeople%2Fdudhia%2Ffiles%2Fpresentations
%2FWRF_Physics_Dudhia.ppt&ei=mKjQUa3qJa6w4QSdnoDgCw&usg=AFQjCNGb933vSVDkzHeeDRk-
swIMEZdMrQ&bvm=bv.48572450,d.bGE 



Figure 4. Average rainfall rate, for a spring-season convective event (a), based on 
observations (OBS) and for five simulations that used different treatments for the convection - 
four different parameterizations, and no parameterization (EX). Also depicted is the rainfallrate 
bias score averaged for three warm-season convective events (b), again for each of the 
four parameterizations and for the use of no parameterization. The four convective 
parameterizations were the Grell (GR), Kain-Fritsch (KF), Betts-Miller (BM), and Anthes- 
Kuo (AK) schemes. Adapted from Wang and Seaman (1997). 



Value of high-resolution  
regional model 

Resolution : 2.4 km 



Snowpack in Central Rockies:  too little at high 
elevation and melts three months too early at 

coarse resolution 
36 km 2 km 

April 15 snapshot of snow pack at two model resolutions 
(Simulation of 2007-2008 water year) 



Thomas T. Warner 

Bulletin of the American 
Meteorological Society 

 



WRF-Solar	
CLOUD-RADIATION-AEROSOL		INTERACTION	

%	Improvement	over	standard	WRF	

Courtesy:		Pedro	Jimenez	



Fluid Flow is Sensitive to  
Initial Conditions 
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Ø  Atmospheric flows display 
sensitivity to initial & 
boundary conditions and to 
physics parameterization              
       Chaotic Attractor 
Ø  How do we stay on the 
correct trajectory? 

  Assimilation 
 Uncertainty 

Quantification Lorenz (1963) 



¨  Data Assimilation – incorporating observations 
into a model 
¡  Surface observations 
¡  Satellite observations 
¡  Atmospheric profiles 
¡  Radar observations 
¡  Data from wind or solar farms 
¡  Specialized data 



Application:  Wind Energy Ramping 
Real Time Four Dimensional Data Assimilation 

RTFDDA 

W/O  
Farm DATA 

With  
Farm DATA 

Gain: 
17 % in RMS 
20% in MAE 
11% in Bias 

0-3 hour Wind Energy Predictions 

Courtesy: Yubao Liu 



8/03/09 771mw up-ramp from 20:10 - 22:10 followed by a 738mw down-ramp from 22:40 - 00:50  
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Assimilation for Nowcasts 

Dynamic Assimilation 
allows recovery of 
characteristics of 
realization 
Ø  Allows better 

prediction to meet 
user needs 

Ø  An effective way to 
deal with 
sensitivity to initial 
conditions 

 
Courtesy: Jenny Sun 



Application:  Wind Energy Ramping 
Variational Doppler Radar Analysis System 

NCAR	Auto-Nowcasting	System	

Gust	fronts	
approaching	
‘wind	plant’	
	
Wind	ramp	
event	is	
imminent	

Wind Farm 

Need	to	provide	
time-of-arrival	and	
magnitude	of	wind	
energy	ramp.	 Courtesy: Jenny Sun 

VDRAS 



VDRAS	
	
Variational	
Doppler	Radar	
Analysis	System	

+	
Expert	System	
(obs-based)	

Courtesy: Jenny Sun 



Nowcast	System	for	Solar	Power	

Nowcast	
Integrator	

StatCast	

CIRACast	

TSICast	

WRF-Solar	

MADCast	

Irradiance	
Calcula,on	

(POA)	

Obs	
(Irradiance)	

MAD-WRF	



Some	Models	Employ	AI:	StatCast	

Tyler	McCandless	



Sky	Imager	Forecast	

θ1 θ2 

6/19/12	

Brookhaven	NL	



Satellite-Based	Forecas?ng	
CIRACast	-	ATen?on	to	Details	

    X 

Imagine we are viewing this cloud from the satellite 

PV Array 

Without account for 
sensor/sun geometry, the 
placement of cloud 
shadows can be 10’s of 
km in error 

Speed																													Direc,onal																						Both	

TYPES	OF	WIND	SHEAR	

Advection of complex cloud 
layers requires proper 
account for wind shear 

MaX	Rogers	&	Steve	Miller:	Colorado	State	University	



AIRS	 IASI	 MODIS	

GOES	Sounder	 GOES	Imager	 Mul?-sensor	

MADCast	
Mul?-sensor	Advec?ve	Diffusive	foreCast	

Tom	Auligne;	Xu	et	al.	(Adv.	in	Atmos.	Sci.	2014)	



Engineering	the	System	



Scien,fic	Advances	in	Wind	Power	Forecas,ng		

31 

WRF RTFDDA 
System 

Natl Center Data 
HRRR, NAM, GFS, RAP 
GEM (Canada), ECMWF 

Wind Farm Data 
Nacelle wind speed 

Generator power 
Node power 
Availability  

 
 

VDRAS 
(nowcasting) 

Supplemental 
Wind Farm Data 

Met towers 
Wind profiler 

Surface Stations 
	
	

Operator GUI 
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Customized Power  
Conversion Curves  

Gerry	Wiener	

Observa?on-based	power	curves	represent	the	site	beTer	than	
manufacturers’	power	curves	

	



Power	Conversion	

PaXern	depends	heavily	on	,me	of	
day,	AM	takes	higher	route;	PM	
more	linear	route	

Empirical	Power	Conversion:		Regression	Tree	-	Cubist	
Example	for	single	axis	tracking	PV	plant	



Quantify Value - Metrics 
Model-Model Comparison Economic Value 

B
as

e 

•  Mean Absolute Error 
•  Root Mean Square Error 
•  Distribution (Statistical Moments and Quantiles) 
•  Categorical Statistics for Events 

•  Operating Reserves 
Analysis 

•  Production Cost 

E
nh
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d 

•  Maximum Absolute Error  
•  Pearson's Correlation Coefficient  
•  Kolmogorov-Smirnov Integral  
•  Statistical Tests for Mean and Variance 
•  OVER Metric 
•  Renyi Entropy  
•  Brier Score incl. decomposition for probability forecasts  
•  Receiver Operating Characteristic (ROC) Curve 
•  Calibration Diagram  
•  Probability Interval Evaluation 
•  Frequency of Superior Performance 
•  Performance Diagram for Events 
•  Taylor Diagram for Errors 

•  Cost of Ramp Forecasting 

Tara Jensen 



NowCast	Performance	

CIRACast	
MADCast	
MAD_WRF	
NowCast	
SmartP	
Statcast_cubist	
WRFSolarNow	

Aggregated	over	
All	Issue	,mes	
and	All	Sky	
Condi,ons	

Component	
performance	
varies	by	lead	
,me	

All	Compontents	
have	lower	MAE	
(greater	skill)	
aaer	30	minutes	
into	forecast	
(lead	,me)	



SunCast	Performance	–	Day	Ahead	

SunCast	Irradiance	

WRFSolar	

NAM,	GEM,	GFS	

Day	Ahead	(DA)	
SunCast	and	WRFSolar	

Outperform	Baseline	(NAM)	
and	other	components	



WRF	RTFDDA	

HRRR	

RAP	

GFS	

GEM	

Other	Model	Data	

.	

.	

.	

Integrator	

Wind	Power	
Forecast	

Nacelle	
Winds	

Turbine	Power	
Predic?on	

ECMWF	

Wind	speed	example	
10-15%	improvement	
over	best	model	

Bill	Myers	

Dynamic	Integrated	Forecast	System	
(DICast)	



Scien,fic	Advances	in	Wind	Power	Forecas,ng		

DICast System Blends Output from Several 
Numerical Weather Prediction Models 

Public Service of Southwestern Public Service Company  
Total Power, 03/08 Ramp 

CAPACITY	(%
)	

TIME	



¨  Recent emphasis in 
popular scientific 
literature to emphasize 
probabilistic approach 

¨  Nate Silver thinks 
meteorologists are 
ahead of the rest: 
¡  Embrace uncertainty 
¡  Quantify it 
¡  This produces better 

deterministic forecasts as 
well 



Ensemble Prediction 



Binned-spread/skill plot of power predictions from 
the calibrated ECMWF EPS (red), calibrated 
COSMO LEPS (blue) and AnEn (black) 

Analog Ensemble 
Method 

 
•  Statistical learning method to 

calibrate model output and 
provide probabilistic information 

•  Based on observed past model-
observation pairs 

•  Algorithm search for analogs and 
clusters them 

•  Shown to perform at least as well 
as full NWP ensemble systems  

Luca Delle Monache & Stefano Allasandrini 

What if we had only one 
member? Analog Prediction 
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Probabilistic Power Prediction 
With Analog Ensemble Method 
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Forecast Lead Time 

*  Deterministic forecast 

* Observations 
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Icing Forecasting System ExWx Provides 
Categorical Forecast of Icing 

§  Predicting wind turbine icing is critical for power 
trading on open market and short term load balancing. 

§  In order to successfully develop a robust wind turbine 
icing forecasting system, a truth dataset must be 
developed. 

§  Limited documentation of icing events and monitoring 
equipment make identifying icing after the fact difficult. 

 
§  Plus, there is a “Big Data” problem. 



Datasets For Icing Forecast 

http://www.newavionics.com/Images/9734_410x359.jpg 

PRIMARY 

SECONDARY 

Power Data 

DICast Data 

Sensor Data 

NWS Data 

METAR Data 



§  WRF icing potential 
•  Evaluates all WRF model levels < 1km 
•  Combines model level height, model 

predicted supercooled liquid water, and 
temperature at each level using fuzzy 
logic maps (configurable) 

•  Final potential at each WRF grid point is 
the maximum of the icing potential at 
each level < 1km 

§  DICast icing potential 
•  Conditional probability of icing (CPOI) 

deterministic forecast from DICast 
•  Combines five NWP model solutions 
•  Typically one site per farm, more in some 

cases 

ExWx Uses WRF-RTFDDA and DICast Blended 
NWP Output to Compute Icing Potential  

UCAR Confidential and Proprietary. © 2015, University Corporation for Atmospheric Research. All rights reserved. 
 

A B A B C B 

A B C D 
 

B 
B D 

W WWW

CPOI 



Icing Forecasting System Provides 
Categorical Icing Forecast 

Icing potential < 0.5 inside window 
Icing potential > 0.5 inside window 
Icing potential > 0.5 outside window 
Icing potential < 0.5 outside window 

§  Note no missing data-wherever 
DICast was missing the WRF is used 
exclusively (and vice-versa) 

§  Threshold of 0.5 is configurable 
based on experience of operators  

§  Event well forecast by ExWx!!! 

ExWx icing potential forecasts for all 
ExWx runs affecting the event 
window (8 hours centered on 00Z) 

12/25/14 

12/26/14 



Scien,fic	Advances	in	Wind	Power	Forecas,ng		

Wind Power Forecasts Resulted in Savings  
for Ratepayers 

Drake Bartlett, Xcel 

Also:  saved  > 267,343 tons CO2 (2014) 

  
Forecasted MAE   Percentage    Savings   
2009        2014*     Improvement                 

16.83%  10.10%   40%          $49,000,000   

 
 *Data through November, 2014 

 



Valua?on	

Produc,on	Cost	Modeling	
•  Accomplished	by	U,lity	
Partner	–	Xcel	
Value	of	50%	Forecast	
Improvement:		$820,000	(2024	–	
increased	u,lity	scale	capacity)	

	

•  Upscaled	by	NCAR	(Lazo)	
–  Annual	Na,onal	Savings:	
				$10	–	$21M	/	year	(2015-2024)	
–  26	year	savings:				$455M	
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NWP	Models	
	NAM	
GFS	

WRF-Solar	
GEM	

RAP/HRRR	

Ini?al	Grid	
Interpolated	to	4	km	

CONUS	Grid	
1-Hour	Averaging		
Archive	data	near	
observa,on	sites	

Observa?ons	
SMUD	
MADIS	

OK	Mesonet	
BNL	

SURFRAD	
Xcel	

DeSota	
ARM	

Sta?s?cal	Correc?on/Blending	
DICast	Point	Correc,on	

Gradient	Boosted	Regression	Trees	
Cubist	

Random	Forests	
Analog	Ensemble	

Output	Products	
Maps	of	solar	irradiance	
Single	point	forecasts	

%	of	clear	sky	irradiance	
Future:	

Other	met.	variables	

Gridded	Atmospheric	Forecasts:		GRAFS-Solar	



Grid	Forecast	Timeseries:	Sunny	Day	

DICast	Correc?on	



GRAFS	

•  A	new	forecast	is	generated	every	hour	
•  Individual	images	are	generated	for	each	lead-,me	

–  Currently	hourly	out	to	60	hours.	



GRAFS	

AI	methods	at	SMUD	Sites	



Summary 

Theme:  Smartly blending data, dynamics, physics, and 
statistical learning methods 

•  We need good models of the dynamics & 
physics 

•  We need high quality data to assimilate 
•  Statistical learning (artificial intelligence) can 

add value and help to determine the 
characteristics of the physics 

•  Specialized applications may require 
specialized forecasts 



Questions 



Supplementary Slides 



StatCast	

•  Forecast	Clear	Sky	Index	
•  Separate	into:	

•  Clear	
•  Partly	Cloudy	
•  Cloudy	

	
Tyler	McCandless	



Regime-Dependent	Statcast	

Tyler	McCandless	



Wind Plant 2 Wind Plant 1 

§  WRF RTFDDA exhibits exceptional capability for forecasting wind ramps 
in term of their timing, rates and magnitudes.  

§  Rapid cycling (hourly) WRF RTFDDA is recommended where 0 - 6h 
ahead wind ramp prediction is critical.  

OBS 
RTFDDA 
GFS 
NAM 

WRF-Real Time 4D Data Assimilation (RTFDDA) 
Assimilates Wind Farm Data 

Courtesy: Yubao Liu 



WRF- RTFDDA Improves  
Short Term Forecasts (0-9h) 

Courtesy: Tara Jensen, Yubao Liu 



Empirical Power Conversion Curves  

Not	Straighoorward!	

Manufacturer's	Power	Curve	 Actual	Power	Curve	

Gerry	Wiener	



LIPA	–	32	MW	
Xcel	–	90	MW	

DeSoto	Plant	–	25	MW		
HECO–	43	MW	

SMUD	–	100	+	50	MW	

SCE		–	350	Comm	+	
325Q	+	1000	Dist	MW	

Opera?onaliza?on	



Evalua?on	System	
NowCast	and	
Components	

StatCast	
CIRACast	
MADCast	

WRFSolarNow	
NowCast	

SmartPersistence	

DICast	and	
Components	

GEM	
GFS	
NAM	

HRRRops	
HRRRx	

WRFSolar	
DICast	

Final	Products	
Power	

AnEn	Members	
Probabili?s?c	
Forecasts	
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MODEL	EVALUATION	
TOOLS	(MET)	

Con?nuous	Stats	
(e.g.	MAE,	RMSE,	

Dist.	Of	Errors,	Brier	
Skill	Score)	

MODEL	EVALUATION	
TOOLS	(MET)	

Categorical	Stats	for	
Ramps	

(e.g.	Probability	of	
Detec?on,	

Frequency	Bias)	
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Matched	
Pairs	
Forecast	
and	
Observed	
Values	
matched	up		
in	Space	
and	Time	
	

Available	for	
advanced	
users	on	
Web	
	

Plots	of	
Time	Series	
Threshold	
Series	

SkyCondi,on
Series	

Box	Plots	
	

Data	for	
analysis	



NowCast	Performance	
Component	 Rank	

0-1hr	 1-3hr	 3-6hr	 all	

CIRACast	 2	 5	 n/a	 5	

MADCast	 5	 3	 4	 4	

MAD_WRF	 6	 2	 3	 2	

Smart	Persist	 7	 7	 5	 7	

StatCast_cubis
t	

1	 6	 n/a	 6	

WRFSolarNow	 3	 1	 1	 1	

NowCast	 4	 4	 2	 3	

WRFSolarNow	–	Ranked	1	
NowCast	–	was	op,mized	in	BP2	



Some	Highlights	
•  WRF-Solar	improved	on	Standard	WRF	by	20-80%	
•  WRF-Solar	also	important	component	of	NowCast	system,	oaen	best	

component	
•  StatCast-Cubist	can	improve	upon	smart	persistence	by	37-62%	-	

short	range	(0-3	hr)	
•  TSICast	beXer	than	persistence	first	15	min	–	29-34%	
•  Cloud	advec,on	and	assimila,on	methods	predict	ramps	well	–	

Nowcast	with	WRF-Solar-Now	
•  Nowcast	improvement	45-53%	MAE	averaged	all	condi,ons,	all	sites		
•  Saw	47%	improvement	in	predic,on	at	Xcel	sites,	despite	2016	

harder	to	predict	(El	Nino)	
•  DICast®	improves	on	best	forecast	

	10-28%	MAE	
•  AnEn	improves	by	another	16-96%	MAE	
•  SunCast	improvement	90%	MAE	(SMUD)	



Recommenda?ons	for	Solar	Fcs?ng	
 
•  Blend	various	component	models	or	systems	together	with	

machine	learning.		
•  Use	a	base	NWP	model	enhanced	and	tuned	for	the	purpose.		
•  Include	mul,ple	NWP	models.	
•  It	is	possible	to	improve	upon	persistence,	even	at	the	very	

short-range	by	using	methods	trained	on	in	situ	observa,ons.	
•  Satellite	based	cloud	advec,on	is	useful,	but	tricky.		
•  NWP	can	be	combined	with	satellite	data	via	assimila,on	for	

nowcas,ng.	
•  The	analog	ensemble	approach	is	helpful	for	both	improving	

the	determinis,c	blended	forecast	as	well	as	for	producing	a	
probabilis,c	predic,on.	

•  An	empirical	power	conversion	method	
					viable,	even	where	data	limited.	
•  Enhanced	metrics	necessary.	
 


