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The	Analog	Ensemble

Figure	adapted	from	Delle Monache et	al.	(2013)
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AnEn has	been	successfully	applied	for:

• Short-term	predictions	of:

Ø 10- and	80-m	wind	speed,	2-m	temperature,	etc.

Ø Wind	power

Ø Load	

Ø Air	quality	predictions	(ground	level	ozone,	surface	PM2.5)

Ø Tropical	cyclones	intensity

Ø Gridded/2D	probabilistic	predictions

• Downscaling,	resource	assessment:

Ø Wind	speed,	precipitation

Ø Computationally	efficient	dynamical	downscaling

Alessandrini et al. ICEM 2015

Alessandrini et al. RE 2015, Davo et al. SE 2016

Delle Monache et al. MWR 2011, 2013, Junk et al. MZ 2015

Djalalova et al. AE 2015, Delle Monache et al. JGR 2017 

Alessandrini et al. MWR 2016

Vanvyve et al. RE 2015, Zhang et al. AE 2015, Keller et al. JAMC 2017  

Sperati et al. QJRMS 2017



Data sets

• 3 stations with solar power data
• Milano: 1 1/2 years, Calabria: 2 years, Catania: 2 

years (1-year verification period)
• Analog predictors (from Regional Atmospheric 

Modeling System ⎼ RAMS): GHI, CC, DNI, 2-m 
temperature, azimuth, solar elevation

• Alessandrini et al. (Applied Energy, 2015)

• 8 Sacramento Municipal Utility 
District (SMUD) stations with global 
horizontal irradiance (GHI) observations

• GHI data over ~7 months (3-month 
verification period)

• Analog predictors (from NCAR’s DICast): 
GHI, direct normal irradiance (DNI), and 
cloud cover (CC)

Milano

Calabria

Catania
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• Brier Skill Score (BSS) > 0 indicate that AnEn has more skill than DICast
• Event considered being GHI > mean(observed GHI at the given lead time)
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Persistence Ensemble (PeEn): most recent 20 measurements at the same hour of the day

Quantile Regression (QR): quantiles of PDF defined independently with different regression 
coefficients on past predicted and observed PV values

An-En vs PeEn, QR
AnEn vs PeEn
QR vs PeEn

AnEn vs PeEn
QR vs PeEn



AnEn sensitivity to time shift in analog 
search

Searching for analog in lead times before or after the lead time of interest extends 
the training data set, and it improves AnEn statistical consistency
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Spread-skill Relationship



Summary

• AnEn successfully tested for solar irradiance and solar power short-term 

predictions

• With AnEn, only one real-time deterministic forecast needed to generate

probabilistic predictions

• No need for initial condition and model perturbation strategies to generate 

an ensemble

• Improves deterministic forecast as well as provides probabilistic 

information

• General algorithm, implemented for several applications

• Superior skill in predicting rare events when compared to state-of-the-

science post-processing methods
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Analog Ensemble (AnEn)

Delle Monache et al. MWR (2013)

Similarity criterion to search and sort the past analog 
forecast



Dynamic Integrated foreCast (DICast)

• NCAR technology (circa 2000)

• Weather engine for a large portion of on-line wx forecasts

• “Lay” forecasts, transportation, wind power, now solar

• State-of-the-art consensus forecast system

• Optimally combines Numerical Weather Prediction (NWP) model data

• Creates ‘tuned’ forecasts using observations

• For SunCast system, hourly GHI forecasts to 3 days

• For details see: Mahoney et al. 2012 or contact Sue Haupt, 

haupt@ucar.edu
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Verification Plan

• Training: Method requires concurrent observations 
and forecasts for a sufficient time history to train
– Use 136 days of concurrent observations and DICast

predictions
– DICAST daily forecasts initialized at 12 UTC over the 226-

day period, lead times from 0 to 72 hours
– Available variables (i.e., analog predictors): GHI, direct 

normal irradiance (DNI), and cloud cover (CC)
• Preliminary Testing: 90 days, from 04 September-

2 December, 2014,  forecast lead times from 0 to 72 
hours 

• Prediction: GHI (Global Horizontal Irradiation, Wm-2)



Analog Ensemble (AnEn) Configuration 
• 10 historic analog ensemble members 
• 3 predictors with different weighting 

(GHI, DNI and Cloud Cover)  
• Analog-predictor weights obtained by an optimization 

algorithm (minimizing RMSE) over the period (5 August-
03 September 2014) performed independently at each 
station

• Possible weights: 1, 0.9, 0.8,…..0.1, 0. (66 possible 
combinations)

• Different time shift lengths tested for analog searching (3 
hours, optimal)

Training ( 106 days) Optim (30 days) Test (90 days)
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Conclusion: AnEn provides probabilistic information that 
provides skill, even for the short training period
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NOTE:
Average BIAS over 3 stations and daylight lead times: -1.08 Wm-2 (AnEn), -4.21 Wm-2 (DICast)
Therefore:  AnEn improves on the DICast bias calibration for this short verification period

AnEn

DICAST     


